Advertisement

Water Resources Management

, Volume 29, Issue 1, pp 139–159 | Cite as

Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model

  • A. PryetEmail author
  • B. Labarthe
  • F. Saleh
  • M. Akopian
  • N. Flipo
Article

Abstract

Groundwater withdrawals can reduce aquifer-to-stream flow and induce stream-to-aquifer flow. These effects involve potential threats over surface water and groundwater quantity and quality. As a result, the description of stream-aquifer flow in space and time is of high interest for water managers. In this study, the EauDyssée platform, an integrated groundwater/surface water model is extended to provide the distribution of stream-aquifer flow at the regional scale. The methodology is implemented over long periods (17 years) in the Seine river basin (76 375 km2, France) with a 6 481 km long simulated river network. The study scale is compatible with the scale of interest of water authorities, which is often larger than study scales of research projects. Net and gross stream-aquifer exchange flow are computed at the daily time step over the whole river network at a resolution of 1 km. Simulation results highlight that a major proportion of the main stream network (82 %) is supplied by groundwater. Groundwater withdrawals induce a reduction of net aquifer-to-stream flow (−19 %) at the basin scale and flow reversals in the vicinity of pumping locations. Such an integrated model provided at the appropriate regional scale is an essential tool provided to water managers for the implementation of the EU Water Framework Directive.

Keywords

Surface water - groundwater interactions Regional modeling Distributed process-based hydrological model Seine river basin European water framework directive 

Notes

Acknowledgements

This project was conducted on the request of the Agence de l’Eau Seine Normandie which participated substantially to the project funding. Funding was also supported by the CNES TOSCA SWOT project and the workpackage ”Stream-Aquifer Interfaces” of the PIREN Seine research program. We kindly thank the BRGM for providing the DEM and aquifer geometries.

References

  1. AESN, DRIEE (2013) Etat des lieux du Bassin de la Seine et des cours d’eau côtiers normands (Strategic environmental assessment of Seine and Normandy coastal rivers district). Seine-Normandy Water Agency and Regional office of the Ministry of EnvironmentGoogle Scholar
  2. Barthel R, Reichenau TG, Krimly T, Dabbert S, Schneider K, Mauser W (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26(7):1929– 1951CrossRefGoogle Scholar
  3. Bencala K, Gooseff M, Kimball B (2011) Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour Res 47:W00H03. doi: 10.1029/2010WR010066 CrossRefGoogle Scholar
  4. Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeol J 20:5–25. doi: 10.1007/513s10040-011-0791-5 CrossRefGoogle Scholar
  5. Billen G, Garnier J, Mouchel JM, Silvestre M (2007) The Seine system: Introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375(1):1–12. doi: 10.1016/j.scitotenv.2006.12.001 CrossRefGoogle Scholar
  6. Borowski I, Hare M (2007) Exploring the gap between water managers and researchers: difficulties of model-based tools to support practical water management. Water Resour Manag 21(7):1049–1074CrossRefGoogle Scholar
  7. Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50(2):170–176. doi: 10.1111/522j.1745-6584.2011.00882.x CrossRefGoogle Scholar
  8. Brunner P, Simmons C, Cook P, Therrien R (2010) Modeling surface water-groundwater interaction with MODFLOW: some considerations. Ground Water 48(2):174–180. doi: 10.1111/j.1745-6584.2009.00644.x CrossRefGoogle Scholar
  9. Chow V (1959) Open-channel hydraulics, McGraw-Hill, chap Part 1. Basic PrinciplesGoogle Scholar
  10. Dahl M, Nilsson B, Langhoff J, Refsgaard J (2007) Review of classification systems and new multi-scale typology of groundwater-surface water interaction. J Hydrol 344(1-2):1–16. doi: 10.1016/j.jhydrol.2007.06.027 CrossRefGoogle Scholar
  11. David C, Habets F, Maidment D, Yang ZL (2011) RAPID applied to the SIM-France model. Hydrol Process 25(22):3412–3425. doi: 10.1002/hyp.5338070 CrossRefGoogle Scholar
  12. de Fouquet C (2012) Environmental statistics revisited: Is the mean reliable?. Envi Sci Tech 46(4):1964–1970. doi: 10.1021/es2024143 CrossRefGoogle Scholar
  13. de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. Academic Press, Inc., Orlando FloridaGoogle Scholar
  14. de Marsily G (2008) Eau, changements climatiques, alimentation et évolution démographique. Revue des Sciences de l’Eau/Journal of Water Science 21(2):111–128Google Scholar
  15. Deschesnes J, Villeneuve JP, Ledoux E, Girard G (1985) Modeling the hydrologic cycle: the MC model. Nordic Hydrol 16(5):273–290Google Scholar
  16. Ebel BA, Mirus BB, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23(13):1949–1959. doi: 10.1002/hyp.7279 CrossRefGoogle Scholar
  17. Ellis P, Mackay R, Rivett M (2007) Quantifying urban river-aquifer fluid exchange processes: A multi-scale problem. J Contam Hydrol 91(1-2):58–80. doi: 10.1016/j.jconhyd.2006.08.014 CrossRefGoogle Scholar
  18. Engeler I, Franssen HH, Müller R, Stauffer F (2011) The importance of coupled modelling of variably saturated groundwater flow–heat transport for assessing river – aquifer interactions. J Hydrol 397(3–4):295–305. doi: 10.1016/j.jhydrol.2010.12.007 CrossRefGoogle Scholar
  19. Etchevers P, Golaz C, Habets F (2001) Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994. J Hydrol 244:60–85. doi: 10.1016/S0022-1694(01)00332-8 CrossRefGoogle Scholar
  20. Fleckenstein J, Niswonger R, Fogg G (2006) River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground water 44(6):837–852. doi: 10.1111/j.1745-6584.2006.00190.x CrossRefGoogle Scholar
  21. Flipo N, Mouhri A, Labarthe B, Biancamaria S, Rivière, Weill P (2014) Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces. Hydrol Earth Syst Sci 18:3121–3149. doi: 10.5194/hess-18-3121-2014 CrossRefGoogle Scholar
  22. Flipo N, Monteil C, Poulin M, de Fouquet C, Krimissa M (2012) Hybrid fitting of a hydrosystem model: Long-term insight into the Beauce aquifer functioning (France). Water Resour Res 48(5):W05509. doi: 10.1029/2011WR011092558 CrossRefGoogle Scholar
  23. Frei S, Fleckenstein J, Kollet S, Maxwell R (2009) Patterns and dynamics of river-aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375:383–393. doi: 10.1016/j.jhydrol.2009.06.038 CrossRefGoogle Scholar
  24. Goderniaux P, Brouyère S, Fowler H, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1-2):122–138. doi: 10.1016/j.jhydrol.2009.04.017 CrossRefGoogle Scholar
  25. Gomez E, Ledoux E, Viennot P, Mignolet C, Benoît M, Bornerand C, Schott C, Mary B, Billen G, Ducharne A, Brunstein D (2003) Un outil de modélisation intégrée du transfert des nitrates sur un système hydrologique: Application au bassin de la Seine. La Houille Blanche 3-2003:38–45CrossRefGoogle Scholar
  26. Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, Friedenberg R, Garcia J, Gaulier J, Gaumet F et al (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodin Acta 13(4):189–245. doi: 10.1016/S0985-3111(00)00118-2 CrossRefGoogle Scholar
  27. Habets F, Gascoin S, Korkmaz S, Thiéry D, Zribi M, Amraoui N, Carli M, Ducharne A, Leblois E, Ledoux E, Martin E, Noilhan J, Ottlé C, Viennot P (2010) Multi-model comparison of a major flood in the groundwater-fed basin of the Somme River (France). Hydrol Earth Syst Sc 14:99–117. doi: 10.5194/hess-14-99-2010 CrossRefGoogle Scholar
  28. Hantush MS (1965) Wells near streams with semipervious beds. J Geophys Res 70(12):2829–2838. doi: 10.1029/JZ070i012p02829 CrossRefGoogle Scholar
  29. Hunt RJ, Strand M, Walker JF (2006) Measuring groundwater–surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA. J Hydrol 320(3):370–384. doi: 10.1016/j.jhydrol.2005.07.029 CrossRefGoogle Scholar
  30. INSEE (2010). Institut National de la Statistique et des Études Économiques (National Institute of Statistics ans Economic Studies, Ministry of the Economy, Finance, and Industry, France). http://www.insee.fr
  31. Jha MK, Chikamori K, Kamii Y, Yamasaki Y (1999) Field investigations for sustainable groundwater utilization in the Konan basin. Water Resour Manag 13(6):443–470CrossRefGoogle Scholar
  32. Kalbus E, Schmidt C, Molson J, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sc 13:69–77. doi: 10.5194/hess-13-69-2009 CrossRefGoogle Scholar
  33. Kikuchi C, Ferré T, Welker J (2012) Spatially telescoping measurements for improved characterization of ground water–surface water interactions. J Hydrol 446:1–12. doi: 10.1016/j.jhydrol.2012.04.002 CrossRefGoogle Scholar
  34. Kirk S, Herbert AW (2002) Assessing the impact of groundwater abstractions on river flows. Geol Soc Lond Spec Publ 193(1):211–233. doi: 10.1144/GSL.SP.2002.193.01.16 CrossRefGoogle Scholar
  35. Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945–958. doi: 10.1016/j.advwatres.2005.08.006 CrossRefGoogle Scholar
  36. Korkmaz S, Ledoux E, Önder H (2009) Application of the coupled model to the Somme river basin. J Hydrol 366(1-4):21–34. doi: 10.1016/j.jhydrol.2008.12.008 CrossRefGoogle Scholar
  37. Krause S, Bronstert A, Zehe E (2007) Groundwater-surface water interactions in a North German lowland floodplain - Implications for the river discharge dynamics and riparian water balance. J Hydrol 347:404–417. doi: 10.1016/j.jhydrol.2007.09.028 CrossRefGoogle Scholar
  38. Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4(4):481–499. doi: 10.1002/eco.176 CrossRefGoogle Scholar
  39. Krause S, Hannah D, Fleckenstein J (2009) Hyporheic hydrology: interactions at the groundwater-surface water interface. Hydrol Process 23:2103–2107. doi: 10.1002/hyp.7366 CrossRefGoogle Scholar
  40. Kurtulus B, Flipo N (2012) Hydraulic head interpolation using anfis - Model selection and sensitivity analysis. Computer & Geosci 38(1):43–51. doi: 10.1016/j.cageo.2011.04.019 CrossRefGoogle Scholar
  41. Ledoux E, Girard G, de Marsily G, Villeneuve J, Deschenes J (1989) Spatially distributed modeling: conceptual approach, coupling surface water and groundwater. In: Unsaturated flow in hydrologic modeling - theory and practice. NATO ASI Series, vol 275, pp 435–454Google Scholar
  42. Ledoux E, Girard G, Villeneuve J (1984) Proposition d’un modèle couplé pour la simulation conjointe des écoulements de surface et des écoulements souterrains sur un bassin hydrologique. La Houille Blanche 1-2:101–120CrossRefGoogle Scholar
  43. Ledoux E, Gomez E, Monget J, Viavattene C, Viennot P, Ducharne A, Benoit M, Mignolet C, Schott C, Mary B (2007) Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci Total Environ 375:33–47. doi: 10.1016/j.scitotenv.2006.12.002 CrossRefGoogle Scholar
  44. Liggett J, Werner A, Simmons C (2012) Influence of the first-order exchange coefficient on simulation of coupled surface-subsurface flow. J Hydrol 414-415:503–515. doi: 10.1016/j.jhydrol.2011.11.028 CrossRefGoogle Scholar
  45. Lin YC, Medina MA Jr (2003) Incorporating transient storage in conjunctive stream-aquifer modeling. Adv Water Resour 26(9):1001 – 1019. doi: 10.1016/S0309-1708(03)00081-2 CrossRefGoogle Scholar
  46. Maier H, Dandy G (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Modell Soft 15:101–124. doi: 10.1016/S1364-8152(99)00007-9 CrossRefGoogle Scholar
  47. Mas-Pla J, Menció A, Marsiñach A (2013) Basement groundwater as a complementary resource for overexploited stream-connected alluvial aquifers. Water Resour Manag 27(1):293–308CrossRefGoogle Scholar
  48. Massei N, Laignel B, Deloffre J, Mesquita J, Motelay A, Lafite R, Durand A (2010) Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950-2008. Int J Climatol 30(14):2146–2154. doi: 10.1002/joc.2022 CrossRefGoogle Scholar
  49. McCallum AM, Andersen MS, Giambastiani B, Kelly BF, Ian Acworth R (2012a) River–aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol Process 27(7):1072–1085. doi: 10.1002/hyp.9229 CrossRefGoogle Scholar
  50. McCallum JL, Cook PG, Berhane D, Rumpf C, McMahon GA (2012b) Quantifying groundwater flows to streams using differential flow gaugings and water chemistry. J Hydrol 416:118–132. doi: 10.1016/j.jhydrol.2011.11.040 CrossRefGoogle Scholar
  51. McDonald M, Harbaugh A (1988) A modular three-dimensional finite-difference ground-water flow model, USGS, chap River Package, pp 6–1–6–36Google Scholar
  52. Mehl S, Hill MC (2002) Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 25(5):497–511CrossRefGoogle Scholar
  53. Mehl S, Hill MC (2010) Grid-size dependence of Cauchy boundary conditions used to simulate stream–aquifer interactions. Adv Water Resour 33(4):430–442. doi: 10.1016/j.advwatres.2010.01.008 CrossRefGoogle Scholar
  54. Monteil C (2011) Estimation de la contribution des principaux aquifères du bassin-versant de la Loire au fonctionnement hydrologique du fleuve à l’étiage. Ph.D. Thesis, MINES-ParisTechGoogle Scholar
  55. Morel-Seytoux HJ (2009) The turning factor in the estimation of stream-aquifer seepage. Ground Water 47(2):205–212. doi: 10.1111/j.1745-6584.2008.00512.x CrossRefGoogle Scholar
  56. Mouhri A, Flipo N, Rejiba F, de Fouquet C, Bodet L, Kurtulus B, Tallec G, Durand V, Jost A, Ansart P, Goblet P (2013) Designing a multi-scale sampling system of stream–aquifer interfaces in a sedimentary basin. J Hydrol 504:194 – 206. doi: 10.1016/j.jhydrol.2013.09.036 CrossRefGoogle Scholar
  57. Nalbantis I, Efstratiadis A, Rozos E, Kopsiafti M, Koutsoyiannis D (2011) Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems. Hydrol Earth Syst Sc 15(3):743–758CrossRefGoogle Scholar
  58. Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27(4):361–382. doi: 10.1016/j.advwatres.2004.02.016 CrossRefGoogle Scholar
  59. Pinder G, Jones J (1969) Determination of the groundwater component of peak discharge from the chemistry of total run-off. Water Resour Res 5(2):438–445. doi: 10.1029/WR005i002p00438 CrossRefGoogle Scholar
  60. QGIS Development Team (2013) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org
  61. Quevauviller P, Balabanis P, Fragakis C, Weydert M, Oliver M, Kaschl A, Arnold G, Kroll A, Galbiati L, Zaldivar JM et al (2005) Science-policy integration needs in support of the implementation of the EU Water Framework Directive. Environ Sci & Policy 8(3):203–211. doi: 10.1016/j.envsci.2005.02.003 CrossRefGoogle Scholar
  62. Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J Appl Meteorol Clim 47(1):92–107. doi: 10.1175/2007JAMC1636.1 CrossRefGoogle Scholar
  63. Refsgaard J, Sørensen H, Mucha I, Rodak D, Hlavaty Z, Bansky L, Klucovska J, Topolska J, Takac J, Kosc V et al (1998) An integrated model for the Danubian lowland–methodology and applications. Water Resour Manag 12(6):433–465CrossRefGoogle Scholar
  64. Refsgaard J A, Storm B (1995) Computer models of watershed hydrology, chap MIKE SHE. Water Resources Publications, pp 809–846Google Scholar
  65. Rosenberry DO (2008) A seepage meter designed for use in flowing water. J Hydrol 359(1):118–130. doi: 10.1016/j.jhydrol.2008.06.029
  66. Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334(1):262–281. doi: 10.1016/j.jhydrol.2006.10.008 CrossRefGoogle Scholar
  67. Said A, Stevens DK, Sehlke G (2005) Estimating water budget in a regional aquifer using HSPF-Modflow integrated model. J Am Water Resour As. doi: 10.1111/j.1752-1688.2005.tb03717.x Google Scholar
  68. Saleh F, Flipo N, Habets F, Ducharne A, Oudin L, Viennot P, Ledoux E (2011) Modeling the impact of in-stream water level fluctuations on stream-aquifer interactions at the regional scale. J Hydrol 400(3):490–500. doi: 10.1016/j.jhydrol.2011.02.001 CrossRefGoogle Scholar
  69. Serrano SE, Workman S (1998) Modeling transient stream/aquifer interaction with the non-linear Boussinesq equation and its analytical solution. J Hydrol 206(3):245–255. doi: 10.1016/S0022-1694(98)00111-5 CrossRefGoogle Scholar
  70. Sophocleous M (2007) The science and practice of environmental flows and the role of hydrogeologists. Ground Water 45(4):393–401. doi: 10.1111/j1745-6584.2007.00322.x CrossRefGoogle Scholar
  71. Sophocleous M, Townsend M, Vogler L, McClain T, Marks E, Coble G (1988) Experimental studies in stream-aquifer interaction along the Arkansas River in central Kansas–Field testing and analysis. J Hydrol 98(3):249–273. doi: 10.1016/0022-1694(88)90017-0 CrossRefGoogle Scholar
  72. Sparks TD, Bockelmann-Evans BN, Falconer RA (2013) Development and Analytical Verification of an Integrated 2-D Surface WaterâĂŤGroundwater Model. Water Resour Manag 27(8):2989–3004CrossRefGoogle Scholar
  73. Tellam JH, Lerner DN (2009) Management tools for the river-aquifer interface. Hydrol Process 23(15):2267–2274. doi: 10.1002/hyp.7243 CrossRefGoogle Scholar
  74. Thierion C, Longuevergne L, Habets F, Ledoux E, Ackerer P, Majdalani S, Leblois E, Lecluse S, Martin E, Queguiner S, Viennot P (2012) Assessing the water balance of the Upper Rhine Graben hydrosystem. J Hydrol 424-425:68–83. doi: 10.1016/j.jhydrol.2011.12.028 CrossRefGoogle Scholar
  75. Tóth J (1963) A Theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4795–4812. doi: 10.1029/JZ068i016p04795 CrossRefGoogle Scholar
  76. VanderKwaak JE, Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res 37:999–1013. doi: 10.1029/2000WR900272 CrossRefGoogle Scholar
  77. Vermeulen P, Te Stroet C, Heemink A (2006) Limitations to upscaling of groundwater flow models dominated by surface water interaction. Water Resour Res 42(10):W10406. doi: 10.1029/2005WR004620 CrossRefGoogle Scholar
  78. Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644. doi: 10.1002/joc.2003 CrossRefGoogle Scholar
  79. Viennot P (2009) Modélisation mathématique du fonctionnement hydrogéologique du bassin de la Seine - Représentation différentiée des aquifères du Tertiaire. Centre de Géosciences, MINES ParisTechGoogle Scholar
  80. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao P, Basu N, Wilson J (2010) The future of hydrology: An evolving science for a changing world. Water Resour Res 46:W05301. doi: 10.1029/2009WR008906 CrossRefGoogle Scholar
  81. Wasson JG, Tusseau-Vuillemin MH, Andréassian V, Perrin C, Faure JB, Barreteau O, Bousquet M, Chastan B (2003) What kind of water models are needed for the implementation of the European Water Framework Directive? Examples from France. Int J River Basin Manag 1(2):125–135CrossRefGoogle Scholar
  82. WFD (2000) Directive 2000/60/ec of the european parliament and of the council of the 23 october 2000 establishing a frame- work for community action in the field of water policy. official journal l 327, 22 dec. 2000. http://ec.europa.eu/environment/water/water-framework/
  83. Xevi E, Christiaens K, Espino A, Sewnandan W, Mallants D, Sørensen H, Feyen J (1997) Calibration, validation and sensitivity analysis of the MIKE-SHE model using the Neuenkirchen catchment as case study. Water Resour Manag 11(3):219–242CrossRefGoogle Scholar
  84. Yang YS, Wang L (2010) A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resour Manag 24(9):1819–1843. doi: 10.1007/s11269-009-9526-y CrossRefGoogle Scholar
  85. Zhang Qi, Werner AD (2009) Integrated surface–subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resour Manag 23(11):2189–2204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Pryet
    • 1
    Email author
  • B. Labarthe
    • 2
  • F. Saleh
    • 3
  • M. Akopian
    • 4
  • N. Flipo
    • 2
  1. 1.EA 4592 Géoressources et Environnement, ENSEGIDInstitut Polytechnique de BordeauxPessac cedexFrance
  2. 2.Geosciences DepartmentMINES ParisTech, PSL Research UniversityFontainebleauFrance
  3. 3.Center for Natural Resources Development and Protection, New Jersey Institute of TechnologyUniversity Heights NewarkNew JerseyUSA
  4. 4.Seine Normandie Water AgencyNanterre CedexFrance

Personalised recommendations