Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas

Abstract

Copula functions are often used for multivariate frequency analyses, but discharge and suspended sediment concentrations have not yet been modelled together with the use of 3-dimensional copula functions. One hydrological station from Slovenia and five stations from USA with watershed areas from 920 km2 to 24,996 km2 were used for trivariate frequency analyses of peak discharges, hydrograph volumes and suspended sediment concentrations. Different parametric marginal distributions were applied and parameters were estimated with the method of L-moments. Maximum pseudo-likelihood method was used for copula parameters estimation. With the use of statistical and graphical tests we selected the most appropriate copula model. Symmetric and asymmetric versions of Archimedean copulas were applied according to the dependence characteristics of the individual stations. We selected Gumbel-Hougaard copula as the most appropriate model for all discussed stations. Primary joint return periods OR and secondary Kendall’s return periods were calculated and comparison between selected copula functions was made. We can conclude that copula functions are useful mathematical tool, which can also be used for modelling variables that are presented in this paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Balistrocchi M, Bacchi B (2011) Modelling the statistical dependence of rainfall event variables through copula functions. Hydrol Earth Syst Sci 15:1959–1977. doi:10.5194/hess-15-1959-2011

  2. Bardossy A (2011) Interpolation of groundwater quality parameters with some values below the detection limit. Hydrol Earth Syst Sci 15:2763–2775. doi:10.5194/hess-15-2763-2011

  3. Bardossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44. doi:10.1029/2007wr006115

  4. Benkhaled A, Higgins H, Chebana F, Necir A (2013) Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria). Hydrol Process. doi:10.1002/hyp.9880

  5. Bezak N, Brilly M, Sraj M (2013a) Comparison between the peaks over threshold method and the annual maximum method for flood frequency analyses. Hydrol Sci J. doi:10.1080/02626667.2013.831174

  6. Bezak N, Sraj M, Mikos M (2013b) Overview of suspended sediments measurements in Slovenia and an example of data analysis. Gradbeni Vestnik 62:274–280 (In Slovene)

  7. Bonacci O, Oskorus D (2010) The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ Earth Sci 59:1661–1670. doi:10.1007/s12665-009-0148-8

  8. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65:1509–1526. doi:10.1080/01621459.1970.10481180

  9. Burn DH (1997) Catchment similarity for regional flood frequency analysis using seasonality measures. J Hydrol 202:212–230. doi:10.1016/s0022-1694(97)00068-1

  10. Chen L, Singh VP, Guo SL, Hao ZC, Li TY (2012) Flood coincidence risk analysis using multivariate copula functions. J Hydrol Eng 17:742–755. doi:10.1061/(asce)he.1943-5584.0000504

  11. De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10:50–57. doi:10.1061/(asce)1084-0699(2005)10:1(50)

  12. Favre AC, El Adlouni S, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40. doi:10.1029/2003wr002456

  13. Fisher NI, Switzer P (1985) Chi-plots for assessing dependence. Biometrika 72:253–265. doi:10.1093/biomet/72.2.253

  14. Fisher NI, Switzer P (2001) Graphical assessment of dependence: is a picture worth 100 tests? Am Stat 55:233–239. doi:10.1198/000313001317098248

  15. Ganguli P, Reddy MJ (2012) Risk assessment of droughts in Gujarat using bivariate copulas. Water Resour Manag 26:3301–3327. doi:10.1007/s11269-012-0073-6

  16. Genest C, Boies JC (2003) Detecting dependence with Kendall plots. Am Stat 57:275–284. doi:10.1198/0003130032431

  17. Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368. doi:10.1061/(asce)1084-0699(2007)12:4(347)

  18. Genest C, Remillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann Instit Henri Poincare Probabilites Stat 44:1096–1127. doi:10.1214/07-aihp148

  19. Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82:543–552. doi:10.1093/biomet/82.3.543

  20. Genest C, Remillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213. doi:10.1016/j.insmatheco.2007.10.005

  21. Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29:1155–1167. doi:10.1016/j.advwatres.2005.09.005

  22. Holtschlag DJ (2001) Optimal estimation of suspended-sediment concentrations in streams. Hydrol Process 15:1133–1155. doi:10.1002/hyp.207

  23. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

  24. Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, London

  25. Kendall MG (1975) Multivariate analysis. Griffin, London

  26. Koffler D, Laaha G (2012) LFSTAT- an R-package for low-flow analysis. EGU General Assembly, Vienna 22–27.4

  27. Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Stat Sin 21:841–871. doi:10.1007/s11222-009-9142-y

  28. Ma MW, Song SB, Ren LL, Jiang SH, Song JL (2013) Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrol Process 27:1175–1190. doi:10.1002/hyp.8432

  29. Nelsen RB (1999) An introduction to copulas. Springer, New York

  30. Parajka J, Viglione A, Rogger M, Salinas JL, Sivapalan M, Bloschl G (2013) Comparative assessment of predictions in ungauged basins—part 1: runoff-hydrograph studies. Hydrol Earth Syst Sci 17:1783–1795. doi:10.5194/hess-17-1783-2013

  31. Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12:394–403. doi:10.1061/(asce)1084-0699(2007)12:4(394)

  32. Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resour Manag 26:3995–4018. doi:10.1007/s11269-012-0124-z

  33. Rodríguez-Blanco ML, Taboada-Castro MM, Palleiro L, Taboada-Castro MT (2010) Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology 123:181–188. doi:10.1016/j.geomorph.2010.07.015

  34. Salvadori G, De Michele C (2004) Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour Res 40. doi:10.1029/2004wr003133

  35. Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature an approach using copulas. Springer, Dordrecht

  36. Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 15:3293–3305. doi:10.5194/hess-15-3293-2011

  37. Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12:420–430. doi:10.1061/(asce)1084-0699(2007)12:4(420)

  38. Sraj M, Bezak N, Brilly M (2014) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process. doi:10.1002/hyp.10145

  39. Tena A, Batalla RJ, Vericat D, Lopez-Tarazon JA (2011) Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula). Geomorphology 125:73–84. doi:10.1016/j.geomorph.2010.07.029

  40. Tramblay Y, St-Hilaire A, Ouarda T (2008) Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrol Sci J 53:236–252. doi:10.1623/hysj.53.1.236

  41. Tramblay Y, Ouarda T, St-Hilaire A, Poulin J (2010) Regional estimation of extreme suspended sediment concentrations using watershed characteristics. J Hydrol 380:305–317. doi:10.1016/j.jhydrol.2009.11.006

  42. Vandenberghe S, Verhoest NEC, Onof C, De Baets B (2011) A comparative copula-based bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett-Lewis modeled rainfall. Water Resour Res 47. doi:10.1029/2009wr008388

  43. Wang C, Chang NB, Yeh GT (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23:1471–1486. doi:10.1002/hyp.7273

  44. Wong G, Lambert MF, Leonard M, Metcalfe AV (2010) Drought analysis using trivariate copulas conditional on climatic states. J Hydrol Eng 15:129–141. doi:10.1061/(asce)he.1943-5584.0000169

  45. Yusof F, Hui-Mean F, Suhaila J, Yusof Z (2013) Characterisation of drought properties with bivariate copula analysis. Water Resour Manag 27:4183–4207. doi:10.1007/s11269-013-0402-4

  46. Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11:150–164. doi:10.1061/(asce)1084-0699(2006)11:2(150)

  47. Zhang L, Singh VP (2007a) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332:93–109. doi:10.1016/j.jhydrol.2006.06.033

  48. Zhang L, Singh VP (2007b) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12:431–439. doi:10.1061/(asce)1084-0699(2007)12:4(431)

Download references

Acknowledgement

We wish to thank the Environmental Agency of the Republic of Slovenia (ARSO) for data provision. We would also like to express our thanks to the United States Geological Survey (USGS) for making the hydrological data available to the public on their web site. The results of the study are part of the Faculty of Civil and Geodetic engineering (UL FGG) work on the Slovenian national research project J2-4096 and on the international research project SedAlp, which is financed by the European Union through the Alpine Space program. The critical and useful comments of three anonymous reviewers and associate editor helped to improve this manuscript, for which the authors are very grateful.

Author information

Correspondence to Nejc Bezak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bezak, N., Mikoš, M. & Šraj, M. Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas. Water Resour Manage 28, 2195–2212 (2014). https://doi.org/10.1007/s11269-014-0606-2

Download citation

Keywords

  • Multivariate analysis
  • Symmetric copulas
  • Asymmetric copulas
  • Flood frequency analysis
  • Suspended sediments