Water Resources Management

, Volume 28, Issue 7, pp 1781–1805 | Cite as

The Recession of Spring Hydrographs, Focused on Karst Aquifers

  • Francesco FiorilloEmail author


This study constitutes a review of spring hydrograph recession analysis, and it is focused on karst aquifers. The different literature models have been separated into empirical and physically-based models; in the last ones, only analytical models have been considered, as they provide the discharge equation during recession. Under constant geometrical and hydraulic aquifer characteristics, it has been found that the “exponential form” appears to be the most recurrent theoretical type, at least during the long-term flow recession. During this stage, any deviation from the exponential form, may suggest hydraulic anisotropy of actual aquifers, as well as aquifer geometry has a fundamental role in controlling the shape of spring hydrographs. The hydrodynamics of karst aquifer under recession has been described, associating any segment of the hydrograph to a specific hydrologic condition of the aquifer, and also to a specific physical law which control the water flow.


Spring hydrograph Recession Karst aquifer Review 



Author is grateful to anonymous reviewers for their helpful advises. This article belongs to a series of “reviews in karst hydrogeology” promoted by the IAH Karst Commission ( with the goal to collect and evaluate current knowledge in different fields of karst hydrogeology and make it available to the scientific community.


  1. Alexakis D, Tsakiris G (2010) Drought impacts on karstic spring annual water potential. Application on Almyros (Crete) brackish spring. Desalin Water Treat 16(1–3):229–237CrossRefGoogle Scholar
  2. Amit H, Lyakhovsky V, Katz A, Starinsky A, Burg A (2002) Interpretation of spring recession curves. Ground Water 40(5):543–551CrossRefGoogle Scholar
  3. Ashton K (1966) The analysis of flow data from karst drainage systems. Trans Cave Res Group G B 7:161–203Google Scholar
  4. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–100CrossRefGoogle Scholar
  5. Bagaric (1976) Discussion on article “Estimation of permeability and effective porosity in karst on the basis of recession curve analyses” by Torbarov K. In: Yevjevich V (ed) Karst hydrology and water resources, 1976, vol 1. Karst Hydrology, Water Resources Publications, Colorado, p 135Google Scholar
  6. Baedke SJ, Krothe NC (2001) Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis. Water Resour Res 37(1):13–19Google Scholar
  7. Bailly-Comte V, Martin JB, Jourde H, Screaton EJ, Pistre S, Langston A (2010) Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J Hydrol 386:55–66CrossRefGoogle Scholar
  8. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  9. Barnes BS (1939) The structure of baseflow recession curve. Trans Am Geophys Union 20:721–725CrossRefGoogle Scholar
  10. Berkaloff E (1967) Limite de validité des formules courantes de tarissement de débit. Chronique d’Hydrogéologie 10:31–41Google Scholar
  11. Binet S, Joigneaux E, Alberic P, Pauwels H, Bruand A (2013) Hydraulic boundary conditions as a controlling factor of water exchanges between a saturated karstic conduit and its surrounding hosted rock – Abstract of the Int. Symp. on Hierarchical Flow Systems in Karst Regions, 4-7 September 2013, BudapestGoogle Scholar
  12. Birk S, Hergarten S (2010) Early recession behaviour of spring hydrographs. J Hydrol 387(1–2):24–32CrossRefGoogle Scholar
  13. Bonacci O (1987) Karst hydrology. Springer Verlag, HerdelbergCrossRefGoogle Scholar
  14. Bonacci O (1988) Determination of the catchment areas in karst – 21st IAH congress, 10-15 October 1988, Guilin, China, 606-611Google Scholar
  15. Bonacci O (1993) Karst spring hydrographs as indicators of karst aquifers. Hydrol Sci J 38:51–62CrossRefGoogle Scholar
  16. Bonacci O (1995) Ground water behaviour in karst: example of the Ombla Spring (Croatia). J Hydrol 165:113–134CrossRefGoogle Scholar
  17. Bonacci O, Zivaljevic R (1993) Hydrological explanation of the flow in karst: example of the Crnojevica spring. J Hydrol 146:405–419CrossRefGoogle Scholar
  18. Boussinesq J (1877) Essai sur la theorie des eaux courantes du mouvement nonpermanent des eaux souterraines. [Theory of underground water flow under a non-permanent regime]. Acad Sci Instr Fr 23:252–260Google Scholar
  19. Boussinesq J (1903) Sur un mode simple d’écoulement des nappes d’eau d’infiltration á lit horizontal, avec rebord vertical tout autour lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond. C R Acad Sci 137:5–11Google Scholar
  20. Boussinesq J (1904) Recherches the’oriques sur l’e’coulement des nappes d’eau infiltre’es dans le sol et sur le de’bit des sources. J Math Pure Appl 10:5–78Google Scholar
  21. Brutsaert W (1994) The unit response of ground water outflow from a hill-slope –. Water Resour Res 30(10):2759–2763CrossRefGoogle Scholar
  22. Castany G (1967) Introduction à l’ètude des courbes de tarissements. Chronique d’Hydrogeol 10:23–30Google Scholar
  23. Civita M, Galfrè M, Vigna B (2005) Nuovi contributi all'analisi della curva di svuotamento delle sorgenti carsiche. Ingegneria e Geologia degli Acquiferi (IGEA, Torino) 20:35–47Google Scholar
  24. Coutagne A (1948) Les variations de dèbit en pèriode non influencèe par les prècipitations. Le dèbit d’inflitration (corrèlations fluviales internes) - 2me partie, Meteorologie et Hydrologie, La Houille Blanche, 416–436Google Scholar
  25. Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269CrossRefGoogle Scholar
  26. Dreybrodt W, Romanov D, Kaufmann G (2010) Evolution of caves in porous limestone by mixing corrosion: a model approach. Geologia Croatica 63(2):129–135CrossRefGoogle Scholar
  27. Drogue C (1972) Analyse statistique des hydrogrammes de decrues des sources karstiques. J Hydrol 15:49–68CrossRefGoogle Scholar
  28. Drogue C (1980) Essai d’identification d’un type de structure de magasins carbonatés fissurés: application à l’interprétation de certains aspects du fonctionnement hydrogéologique. Mémoire hors série de la Société Géologique de France 11:101–108Google Scholar
  29. Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier I (1997) A numerical simulation as a tool for checking the interpretation of karst springs hydrographs. J Hydrol 193:306–315CrossRefGoogle Scholar
  30. Estrela T, Sahuquillo A (1997) Modelling the response of a karstic spring at Arteta aquifer in Spain. Ground Water 35(1):18–24CrossRefGoogle Scholar
  31. Fiorillo F (2011) Tank-reservoir emptying as a simulation of recession limb of karst spring hydrographs. Hydrogeol J 19:1009–1019CrossRefGoogle Scholar
  32. Fiorillo F (2012) Reply to comment on “Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs”. Hydrogeol J 20:1429–1431CrossRefGoogle Scholar
  33. Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by the cross-correlation analysis. Hydrogeol J 18:1881–1895CrossRefGoogle Scholar
  34. Fiorillo F, Guadagno FM (2010) Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resour Manag 24:1867–1884CrossRefGoogle Scholar
  35. Fiorillo F, Guadagno FM (2012) Long Karst spring discharge time series and droughts occurrence in southern Italy. Environ Earth Sci 65(8):2273–2283CrossRefGoogle Scholar
  36. Fiorillo F, Revellino P, Ventafridda G (2012) Karst aquifer draining during dry periods. J Cave Karst Stud 74(2):148–156CrossRefGoogle Scholar
  37. Florea LJ, Vacher HL (2006) Springflow hydrographs: eogenetic vs. telogenetic karst. Ground Water 44(3):352–361CrossRefGoogle Scholar
  38. Ford DC, Ewers RO (1978) The development of limestone cave systems in the dimensions of length and depth. Can J Earth Sci 15(11):1783–1798CrossRefGoogle Scholar
  39. Ford D, Williams P (2007) Karst hydrogeology and heomorphology. Wiley, England, 562 ppCrossRefGoogle Scholar
  40. Forkasiewicz J, Paloc H (1967) Le regime de tarissement de la Foux-de-la-Vis [Analysis of the recession period of the Foux-de-la-Vis spring]. Etude preliminaire. Chronique d’Hydrogeologie, BRGM 3(10):61–73Google Scholar
  41. Gabrovšek F, Dreybrodt W (2010) Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: a model. J Hydrol 386(1–4):130–141CrossRefGoogle Scholar
  42. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J. doi: 10.1007/s10040-012-0897-4 Google Scholar
  43. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564CrossRefGoogle Scholar
  44. Goldscheider N (2012) A holistic approach to groundwater protection and ecosystem services in karst terrains. AQUA Mundi 2:117–124Google Scholar
  45. Gunn J (1986) A conceptual model for conduit flow dominated karst aquifers. In “Karst water resources. In: Günay G, Johnson AI (eds) Proc Ankara Symp, July 1985, 587-596. IAHS Publ. n.161Google Scholar
  46. Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox Cave system (Missouri, USA). J Hydrol 204:24–36CrossRefGoogle Scholar
  47. Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction with engineering and geological applications. McGraw-Hill, NY, 278 ppGoogle Scholar
  48. Jacob CE (1946) Radial flow in a leaky artesian aquifer. Trans Am Geophys Union 27:198–205CrossRefGoogle Scholar
  49. Jeannin P-Y, Sauter M (1998) Analysis of karst hydrodynamic behaviour using global approaches : a review. Bulletin d’Hydrogeologie 16:31–48Google Scholar
  50. Kaufmann G (2003) A model comparison of karst aquifer evolution for different matrix flow formulations. J Hydrol 283(1–4):281–289CrossRefGoogle Scholar
  51. Kiraly L (2002) Karstification and groundwater flow. In: Postojna-Ljubljana, Gabrovsek F, Zalozba ZRC (eds) Evolution of karst: from prekarst to cessation 155–190Google Scholar
  52. Kovács A, Perrochet P (2008) A quantitative approach to spring hydrograph decomposition. J Hydrol 352:16–29CrossRefGoogle Scholar
  53. Kovács A, Perrochet P, Király L, Jeannin P (2005) A quantitative method for characterisation of karst aquifers based on the spring hydrograph analysis. J Hydrol 303:152–164CrossRefGoogle Scholar
  54. Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, 807 ppGoogle Scholar
  55. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Engineering, theory, management, and sustainability. Elsevier, Butterworth- Heinemann, Oxford, 573 ppGoogle Scholar
  56. Maillet E (1905) Essais d’Hydraulique souterraine et fluviale [Underground and river hydrology]. Hermann, Paris, 218Google Scholar
  57. Malìk P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mts., Slovakia. Environ Geol 51:707–711CrossRefGoogle Scholar
  58. Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 65(8):2245–2257CrossRefGoogle Scholar
  59. Maramathas AJ, Boudouvis AG (2010) A “fractal” modification of Torricelli’s formula. Hydrogeol J 18:311–316CrossRefGoogle Scholar
  60. Martin JB, Dean RW (2001) Exchange of water between conduits and matrix in the Floridan aquifer. Chem Geol 179(1–4):145–165CrossRefGoogle Scholar
  61. Mangin A (1975) Contribution à l’étude hydrodynamique des aquiféres karstiques [A contribution to the study of karst aquifer hydrodynamics]. 3éme partie. Annales de Spéléogie 30(1):21–124Google Scholar
  62. Mijatovic BF (1968) A method studying the hydrodynamic regime of karst aquifers by analysis of the discharge curve and level fluctuation during the recession [In Serbian]. Vesnik Zavoda za Geloska I Geofizicka Istrazivanja, Serie B 8:41–81Google Scholar
  63. Milanovic P (1976) Water regime in deep karst: case study of Ombla spring drainage area. In: Yevjevich V (ed) Karst hydrology and water resources, vol 1. Karst Hydrology, Water resources Pubblications, Colorado, pp 165–191Google Scholar
  64. Milanovic PT (1981) Karst hydrogeology. Water Resources Publications, Littleton, 434 ppGoogle Scholar
  65. Mohammadi Z, Shoja A (2013) Effect of annual rainfall amount on characteristics of karst spring hydrograph. Carbonates Evaporites. doi: 10.1007/s13146-013-0175-0 Google Scholar
  66. Nutbrown DA, Downing RA (1976) Normal-mode analysis of the structure of base flow recession curves. J Hydrol 30:327–340CrossRefGoogle Scholar
  67. Padilla A, Pulido-Bosh A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32:267–277CrossRefGoogle Scholar
  68. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21CrossRefGoogle Scholar
  69. Ravbar N, Engelhardt I, Goldscheider N (2011) Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjsek spring, Slovenia. Hydrol Process 25:2130–2140CrossRefGoogle Scholar
  70. Rorabaugh MI (1964) Estimating changes in bank storage and ground-water contribution to streamflow. Int Assoc Sci Hydrol Publ 63:432–441Google Scholar
  71. Sahuquillo A, Gómez-Hernández, JJ (2003) Comment on ‘‘Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis” by SJ Baedke and NC Krothe. Water Resour Res 39(6):1152. doi: 10.1029/2002WR001472
  72. Samani N, Ebrahimi B (1996) Analysis of spring hydrographs for hydrogeological evaluation of a karst aquifer system. Theor Appl Karstol 9:97–112Google Scholar
  73. Schöller H (1965) Hydrodynamique dans le karst. [Hydrodynamics of the karst] Proc Dubrovnik Sym. Hydrology of Fractured Rocks -UNESCO, 1:3–20Google Scholar
  74. Schmidt S, Geyer T, Guttman J, Marei A, Ries F, Sauter M (2014) Characterisation and modelling of conduit restricted karst aquifers – example of the Auja spring, Jordan Valley. J Hydrology. doi: 10.1016/j.jhydrol.2014.02.019
  75. Soulios G (1991) Contribution à l’ètude des coubes de recession des souces karstiques : example du pays hellènique. J Hydrol 124:29–42CrossRefGoogle Scholar
  76. Stevanovic Z, Milanovic, Ristic V (2010) Supportive methods for assessing effective porosity and regulating karst aquifers. Acta Carsologica 39(2):301–311Google Scholar
  77. Szilagyi J (1999) On the use of semi-logarithmic plots for baseflow separation. Ground Water 37(5):660–662CrossRefGoogle Scholar
  78. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370CrossRefGoogle Scholar
  79. Theis CV (1935) The relation between the lowering of the piezometric surface and rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524CrossRefGoogle Scholar
  80. Torbarov K (1976) Estimation of permeability and effective porosity in karst on the basis of recession curve analyses. In: Yevjevich V (ed) Karst hydrology and water resources. Water resources Pubblications, Colorado, pp 121–136Google Scholar
  81. Trainer FW, Watkins FA (1974) Use of base-runoff recession curves to determine areal transmissivities in the upper Potomac River basin. US Geol Survey J Res 2:125–131Google Scholar
  82. Tsakiris G, Alexakis D (2013) Karstic spring water quality: the effect of groundwater abstraction from the recharge area. Desalin Water Treat. doi: 10.1080/19443994.2013.800253 Google Scholar
  83. White WB (1988) Geomorphology and hydrology of Karst terrain. Oxford Press University, New York, p 464Google Scholar
  84. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105CrossRefGoogle Scholar
  85. White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. J Cave Karst Stud 69(1):13–26Google Scholar
  86. Winston WE, Criss RE (2004) Dynamic hydrologic and geochemical response in a perennial karst spring. Water Resour Res 40(5):W051061–W0510611Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Dipartimento di Scienze e TecnologieUniversity of SannioBeneventoItaly

Personalised recommendations