Advertisement

Water Resources Management

, Volume 28, Issue 6, pp 1767–1780 | Cite as

Security of Water Supply and Electricity Production: Aspects of Integrated Management

  • H. KochEmail author
  • S. Vögele
  • M. Kaltofen
  • M. Grossmann
  • U. Grünewald
Article

Abstract

The share of renewable resources in electricity generation, e.g. in Germany, is increasing. The power sector is thus becoming more dependent on climate/weather parameters. During the summer months of the last decade, numerous thermal power plants in Europe had to be throttled due to water shortages and high water temperatures. At the same time, Europe was confronted with a reduction in hydropower production. One method of securing a future electricity supply is to increase the reliability of the water supply for power plants. In this paper, scenarios are presented for future electricity production by hydropower and thermal power plants in the Elbe river basin. Electricity production in hydropower plants will decline by approximately 13 % by 2050. This decline is due to climate change and it could be compensated for by optimizing and modernizing existing hydropower plants. Due to higher efficiencies and the conversion of plant cooling systems, no water shortages are expected in most thermal power plants. However, water shortages are expected to affect the plants in the city of Berlin. Inter- and intra-basin water transfers constitute a possible adaptation option. While the transfer of water from the river Oder would be the most cost-efficient solution from Berlin’s perspective, the transfer of water from the river Elbe would have additional positive effects in the upstream Spree river sub-basin.

Keywords

Water supply Electricity production Integrated management Elbe basin 

Notes

Acknowledgments

This work was carried out as part of the German Research Programme on Global Change in the Hydrological Cycle (GLOWA), namely GLOWA-Elbe, funded by the German Federal Ministry of Education and Research (BMBF).

References

  1. Aguiar R, Goncalves H, Oliveira M, Reis MJ (2002) Energy. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal. Scenarios, impacts and adaptation measures - SIAM project. Gradiva, LisbonGoogle Scholar
  2. Blazejczak J, Gornig M, Hartje V (2012) Downscaling non climatic drivers for surface water vulnerabilities in the River Elbe basin. Reg Environ Chang 12:69–80CrossRefGoogle Scholar
  3. BMU (2010) Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global - „Leitstudie 2010“. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin/Bonn. 273 pGoogle Scholar
  4. BMU (2011) Erneuerbare Energien 2010. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin/Bonn. 25 pGoogle Scholar
  5. Conradt T, Koch H, Hattermann FF, Wechsung F (2012) Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg Environ Chang 12:633–648CrossRefGoogle Scholar
  6. EU-WFD (2000) The European Parliament and the Council of the European Union. Directive 2000/60/EC of 23 October 2000 establishing a framework for community action in the field of water policy. Official J. of the Europ Communities L327/1 of 22 December 2000Google Scholar
  7. Feeley TJ, Skone TJ, Stiegel GJ, McNemar A, Nemeth M, Schimmoller B, Murphy JT, Manfredo L (2008) Water: a critical resource in the thermoelectric power industry. Energy 33:1–11CrossRefGoogle Scholar
  8. Förster H, Lilliestam J (2010) Modeling thermoelectric power generation in view of climate change. Reg Environ Chang 10:327–338CrossRefGoogle Scholar
  9. Gleick PH (1994) Water and energy. Annu Rev Energy Environ 19:267–299CrossRefGoogle Scholar
  10. Godde D (2008) Die Wasserkraft und die Europäische Wasserrahmenrichtlinie. KW Korrespondenz Wasserwirtschaf 1:687–690Google Scholar
  11. Grossmann M, Dietrich D (2012) Integrated economic-hydrologic assessment of water management options for regulated wetlands under conditions of climate change: a case study from the Spreewald (Germany). Water Resour Manag 26:2081–2108CrossRefGoogle Scholar
  12. Hurd B, Harrod M (2001) Water resources: Economic analysis. In: Mendelsohn R (ed) Global warming and the american economy. Edward Elgar Publishing Ltd., Cheltenham, pp 106–131Google Scholar
  13. IKSE (2005) Die Elbe und ihr Einzugsgebiet. Internationale Kommission zum Schutz der Elbe, Magdeburg, 258 pGoogle Scholar
  14. IPCC (2001) Climate change 2000, Summary for policy makers. Cambridge University Press, CambridgeGoogle Scholar
  15. IPCC (2007) Summary for policymakers. Climate change 2007: Impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Kaden S, Schramm M, Redetzky M (2008) Large-scale water management models as instruments for river catchment management. In: Wechsung F, Kaden S, Behrendt H, Klöcking B (eds) Integrated analysis of the impacts of global change on environment and society in the Elbe Basin. Weißenseeverlag, Berlin, pp 217–227Google Scholar
  17. Kirshen P, Ruth M, Anderson W (2008) Interdependencies of urban climate change impacts and adaptation strategies: a case study of Metropolitan Boston USA. Clim Chang 86:105–122CrossRefGoogle Scholar
  18. KlimAdapt (2010) Ableitung von prioritären Maßnahmen zur Adaption des Energiesystems an den Klimawandel. Endbericht, Studie im Auftrag der Österreichische Forschungsförderungsgesellschaft mbH (FFG), WienGoogle Scholar
  19. Koch H, Vögele S (2009) Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol Econ 68:2031–2039CrossRefGoogle Scholar
  20. Koch H, Grünewald U, Kaltofen M, Kaden S (2009) Anpassungsstrategien für die Wasserbewirtschaftung an den globalen Wandel im Einzugsgebiet der Spree. KW Korrespondenz Wasserwirtschaft 11:600–605Google Scholar
  21. Koch H, Vögele S, Kaltofen M, Grünewald U (2012) Trends in water demand and water availability for power plants - scenario analyses for the German capital Berlin. Clim Chang 110:879–899CrossRefGoogle Scholar
  22. Krysanova V, Dickens C, Timmerman J, Varela-Ortega C, Schlüter M, Roest K et al (2010) Cross-comparison of climate change adaptation strategies across large river basins in Europe, Africa and Asia. Water Resour Manag 24:4121–4160CrossRefGoogle Scholar
  23. Lehner B, Czisch G, Vassolo S (2005) The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33:839–855CrossRefGoogle Scholar
  24. Linnerud K, Mideksa T, Eskeland G (2011) The impact of climate change on nuclear power supply. Energy J 32:149–168CrossRefGoogle Scholar
  25. Macknick J, Newmark R, Heath G, Hallett KC (2012) Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett 7:045802CrossRefGoogle Scholar
  26. Orlowsky B, Gerstengarbe FW, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92:209–223CrossRefGoogle Scholar
  27. Prasch M, Mauser W (2010) Globaler Wandel des Wasserkreislaufs am Beispiel der Oberen Donau. KLIWA-Berichte, Heft 15: Klimaveränderung und Konsequenzen für die Wasserwirtschaft. 293–302Google Scholar
  28. Reinhardt U (2007) Wasserkraftnutzung in Ostdeutschland. Wasserwirtschaft 6:33–36Google Scholar
  29. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Manzini LKE, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. Tech. Rep., MPI for Meteorology, Hamburg, GermanyGoogle Scholar
  30. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci 11:1191–1205CrossRefGoogle Scholar
  31. Seljom P, Rosenberg E, Fidje A, Haugen JE, Meir M, Rekstad J, Jarlset T (2011) Modelling the effects of climate change on the energy system—A case study of Norway. Energy Policy 39:7310–7321CrossRefGoogle Scholar
  32. Strauch U (2011) Wassertemperaturbedingte Leistungseinschränkungen konventioneller thermischer Kraftwerke in Deutschland und die Entwicklung rezenter und zukünftiger Flusswassertemperaturen im Kontext des Klimawandels. Würzburger Geographische Arbeiten Heft 106. WürzburgGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. Koch
    • 1
    Email author
  • S. Vögele
    • 2
  • M. Kaltofen
    • 3
  • M. Grossmann
    • 4
  • U. Grünewald
    • 5
  1. 1.Climate Impacts & Vulnerabilities DepartmentPotsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE)Forschungszentrum JülichJülichGermany
  3. 3.Branch office DresdenDHI-WASY GmbHDresdenGermany
  4. 4.Institut für Landschaftsarchitektur und Umweltplanung, EB 4-2Technische Universität BerlinBerlinGermany
  5. 5.Chair of Hydrology and Water Resources ManagementBrandenburg University of Technology CottbusCottbusGermany

Personalised recommendations