Water Resources Management

, Volume 28, Issue 4, pp 979–997 | Cite as

Environmental Assessment of Sewer Construction in Small to Medium Sized Cities Using Life Cycle Assessment

  • Anna Petit-Boix
  • David Sanjuan-Delmás
  • Carles M. Gasol
  • Gara Villalba
  • María Eugenia Suárez-Ojeda
  • Xavier Gabarrell
  • Alejandro Josa
  • Joan Rieradevall


In a world with an increasing urban population, analysing the construction impacts of sanitation infrastructures through Life Cycle Assessment (LCA) is necessary for defining the best environmental management strategies. In this study, the environmental impacts of one linear meter of sewer constructive solution were analysed for different pipe materials and diameters used in Southern Europe; a unit of different sewer appurtenances (pump, manhole and inspection chamber) was also considered. The impacts of the pipe materials were compared considering different lifespan periods and high-density polyethylene (HDPE) turned out to be the worst option, being polyvinyl chloride (PVC) and concrete the most favourable ones. Few data are available on the material and energy flows in the installation stage; therefore, a comparative analysis of trenches with sand and concrete bedding was conducted. The results show that the installation stage represents up to 80 % of the total life-cycle impact of the constructive solutions. Concrete pipes with half-concrete/half-sand bedding are the best option and produce 20–30 % of the impact of HDPE pipes with concrete bedding. Hence, designers should focus not only on the pipe but also on the trench model. A methodology was presented to enable the impact aggregation of the different sewer elements, and Betanzos (Spain) was selected to conduct a pilot study in small cities. In the future, studies will need to incorporate the use and maintenance stage, as it is not standard and varies according to the physical features of the cities. Finally, this study provides basic concepts for developing eco-efficiency indicators.


Pipe Appurtenance LCI Urban Construction Smart cities 



This study was carried out in the framework of the AQUAENVEC project (LIFE10/ENV/ES/000520) “Assessment and improvement of the urban water cycle eco-efficiency using LCA and LCC”. The authors would like to thank the Water Technology Centre (CETaqua) and CLABSA for supplying all of the data and for their technical advice. The authors are also grateful for the support of the Spanish Ministry of Education and Science through the projects BIA2010-20789-C04-01 and CTM2010-17365.

Supplementary material

11269_2014_528_MOESM1_ESM.pdf (192 kb)
ESM 1 (PDF 192 kb)


  1. AG, Geberit International (1998) Environmental comparison of domestic sewage pipes of different materials (Ökobilanz von Rohren zur Hausentwässerung). Geberit International AG, SwitzerlandGoogle Scholar
  2. Anders K, Anders A (1997) Environmental assessment of sewage pipes in PVC, PE, PP and concrete (Miljøvurdering af afløbsrør i PVC, PE, PP og beton). DOR/Nordiska Plaströrgruppen, StockholmGoogle Scholar
  3. Arpke A, Hutzler N (2006) Domestic water use in the United States. A life-cycle approach. J Ind Ecol 10(1):169–184Google Scholar
  4. Beale DJ, Marlow DR, Cook S (2013) Estimating the cost and carbon impact of a long term water main rehabilitation strategy. Water Resour Manag. doi: 10.1007/s11269-013-0386-0 Google Scholar
  5. Bueno MS (2010) What lies underground? Trenchless technology polls Municipalities on sewer pipe usage. 2010 Pipe materials guide, Trenchless technology special supplement, 8–11
  6. CEDEX, Centre for Hydrographic Studies (2009) Technical guide on sewer networks and urban drain (Guía técnica sobre redes de saneamiento y drenaje urbano), 3ath edn. Ministerio de Fomento. Secretaría General Técnica. Centro de Publicaciones, MadridGoogle Scholar
  7. CLABSA, Clavegueram de Barcelona, S.A. (Personal Communication, 2013). Acer, 16, 08038 Barcelona, SpainGoogle Scholar
  8. Cohen R, Wolff G, Cousins E, Greenfield B (2004) Energy down the drain. the hidden costs of California’s Water Supply. Natural Resources Defense Council, Pacific Institute, Auckland, California, USGoogle Scholar
  9. CONTEC, Control Técnico del Ciclo Integral del Agua (2012) ©Aqualogy services companyGoogle Scholar
  10. Council Directive EC 2000/60/EC of 23 October 2000 on establishing a framework for Community action in the field of water policyGoogle Scholar
  11. CPSA, Concrete Pipeline Systems Association (2010) PAS 2050- partial lifecycle assessment. Cradle-to-gate analysis for concrete pipeline. Manhole Ring and Cover Slab, LeicesterGoogle Scholar
  12. Dennison FJ, Azapagic A, Clift R, Coulbourne FS (1999) Life cycle assessment: comparing strategic options for the mains infrastructure—part I. Water Sci Technol 39(10):315–319CrossRefGoogle Scholar
  13. EA, The Environment Agency (2008) Greenhouse gas emissions of water supply and demand management options. Science Report—SC070010Google Scholar
  14. Ecoinvent (2009) Swiss Centre for Life Cycle Inventories. Ecoinvent database v3.0. Technical report. January 2013
  15. EN 15804 (2011) Sustainability of construction works—environmental product declarations—core rules for the product category of construction works. European Standard. European Committee for Standardization, Brussels, BelgiumGoogle Scholar
  16. Friedrich E, Pillay S, Buckley CA (2009) Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study. J Clean Prod 17(1):1–12CrossRefGoogle Scholar
  17. GISAgua (2012) ©Aqualogy Services CompanyGoogle Scholar
  18. Gleick PH (1996) Basic water requirements for human activities: meeting basic needs. Water Int 21:83–92CrossRefGoogle Scholar
  19. Griffiths-Sattenspiel B, Wilson W (2009). The carbon footprint of water. A River Network Report, PortlandGoogle Scholar
  20. Guinée JB, (ed), Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Weidema BP (2001) Life cycle assessment: an operational guide to the ISO standards. Parts 1 and 2. Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Den Haag (Guinée JB, final editor)Google Scholar
  21. INTRON (1995) Environmental profile and environmental measures of a concrete external sewer [Intron report No. 95027] and Environmental profile and environmental measures of an external sewer of PVC and vitrified clay in comparison to concrete [Intron report No. 95195] (Ökobilanz für Rohre aus Beton, Ton, PVC). INTRON, NetherlandsGoogle Scholar
  22. ISO (International Organization for Standardization) (2006) Environmental management—life cycle assessment—principles and framework. International Standard 14040, GenevaGoogle Scholar
  23. Klein G, Krebs M, Hall V, O’Brien T, Blevins BB (2005). California’s Water-Energy relationship. Final Staff Report. California Energy CommissionGoogle Scholar
  24. Knoeri C, Sanyé-Mengual E, Althaus H (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess (online). doi: 10.1007/s11367-012-0544-2 Google Scholar
  25. Lassaux S, Renzoni R, Germain A (2007) Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 12(2):118–126CrossRefGoogle Scholar
  26. Lundström H, Ölund G, Rydberg GT (1996) Life cycle assessment of a concrete sewage pipe. CIT ekologik, The Nordic project on Sustainable Concrete Technology. Chalmers IndustriteknikGoogle Scholar
  27. Mendoza JMF, Oliver-Solà J, Gabarrell X, Rieradevall J, Josa A (2012) Planning strategies for promoting environmentally suitable pedestrian pavements in cities. Transp Res Part D: Transp Environ 17(6):442–450CrossRefGoogle Scholar
  28. MetaBase ITeC (2010) Online ITeC database: prices, technical details, companies, certificates, product pictures and environmental data. Accessed February 2013
  29. Nielsen CB, Schaumann J, Hvorslev S, Sejersen P (1998) Sewage pipe components in PVC, PP, HDPE and concrete (Afløbskomponenter af PVC, PP, HDPE og beton). Danish EPA, DenmarkGoogle Scholar
  30. Pearson LJ, Coggan A, Proctor W, Smith TF (2010) A sustainable decision support framework for urban water management. Water Resour Manag 24:363–376CrossRefGoogle Scholar
  31. PRé Consultants (2010) SimaPro 7.2.0. PRé Consultants, AmersfoortGoogle Scholar
  32. Roux P, Mur I, Risch E, Boutin C (2011) Urban planning of sewer infrastructure: Impact of population density and land topography on environmental performances of wastewater treatment systems. In: Presented at the Life Cycle Conference 2011, “Policy: LCM in Public Policy” Session, BerlinGoogle Scholar
  33. Short MD, Peirson WL, Peters GM, Cox RJ (2012) Managing adaptation of urban water systems in a changing climate. Water Resour Manag 26:1953–1981CrossRefGoogle Scholar
  34. Strutt J, Wilson S, Shorney-Darby H, Shaw A, Byers A (2008) Assessing the carbon footprint of water production. Am Water Works Assoc J 100(6):80–91Google Scholar
  35. The World Bank (2012) Urban population (% of total). Accessed March 2013
  36. Valderrama C, Granados R, Cortina JL, Gasol CM, Guillem M, Josa A (2012) Implementation of best available techniques in cement manufacturing: a life-cycle assessment study. J Clean Prod 25:60–67CrossRefGoogle Scholar
  37. Valderrama C, Granados R, Cortina JL, Gasol CM, Josa A (2013) Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J Clean Prod 51:205–213CrossRefGoogle Scholar
  38. Van Drunen M, Tukker A, Rioolbuizen M (2000). Life cycle of wastewater pipes made from PVC, concrete and HD-PE. Pub: Institute for Environmental Studies (IVM) and TNO-STB, DELFT, NetherlandsGoogle Scholar
  39. Van Leeuwen CJ, Frijns J, van Wezel A, van de Ven FHM (2012) City blueprints: 24 indicators to assess the sustainability of the urban water cycle. Water Resour Manag 26:2177–2197CrossRefGoogle Scholar
  40. Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36(2):792–800CrossRefGoogle Scholar
  41. Venkatesh G, Hammervold J, Brattebø H (2009) Combined MFA-LCA for analysis of wastewater pipeline networks. J Ind Ecol 13(4):532–550CrossRefGoogle Scholar
  42. Viñolas B (2011) Applications and methodology advances in MIVES multicriteria valorations (Aplicaciones y avances de la metodología MIVES en valoraciones multicriterio). Doctoral Thesis. Universitat Politècnica de CatalunyaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anna Petit-Boix
    • 1
  • David Sanjuan-Delmás
    • 1
  • Carles M. Gasol
    • 1
    • 2
  • Gara Villalba
    • 1
    • 3
  • María Eugenia Suárez-Ojeda
    • 3
  • Xavier Gabarrell
    • 1
    • 3
  • Alejandro Josa
    • 4
    • 5
  • Joan Rieradevall
    • 1
    • 3
  1. 1.Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA)Universitat Autònoma de Barcelona (UAB), Campus UABBarcelonaSpain
  2. 2.Inèdit Innovació SL, Research Park of the Universitat Autònoma de BarcelonaUniversitat Autònoma de Barcelona (UAB), Campus UABBarcelonaSpain
  3. 3.Department of Chemical Engineering, Biotechnology Reference Network (XRB), School of Engineering (ETSE)Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
  4. 4.Department of Geotechnical Engineering and Geosciences, School of Civil EngineeringUniversitat Politècnica de Catalunya-Barcelona Tech (UPC)BarcelonaSpain
  5. 5.Institute of SustainabilityUniversitat Politècnica de Catalunya-Barcelona Tech (UPC)BarcelonaSpain

Personalised recommendations