Water Resources Management

, Volume 28, Issue 3, pp 767–783 | Cite as

Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration

  • Jianzhong Zhou
  • Shuo Ouyang
  • Xuemin Wang
  • Lei Ye
  • Hao Wang


For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm, which is first implemented in solving the parameters calibration problem of CHM. In this algorithm, a self-adaptive parameter is applied in local search operation for adjusting the values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly, by several benchmark test problems. After achieving satisfactory performance on the test problems, a case study is implemented for parameter calibration of a CHM by comparing the properties of POS obtained by the MOCSEM and other methods. Finally, when the optimization problem quickly becomes a decision-making problem because of the multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal solution method has been used to rank the POS and select the optimal scheme. The results show that the MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-making scenarios.


Parameters calibration Conceptual hydrological models Multi-objective cultural self-adaptive electromagnetism-like mechanism Decision-making problem 



This work is supported by the National Natural Science Foundation of China (No. 51239004) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100142110012). Special thanks are given to the anonymous reviewers and editors for their constructive comments.


  1. Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality modeling using multiobjective particle swarm optimization (MOPSO). Water Resour Manag 27(7):1931–1947. doi: 10.1007/s11269-013-0263-x CrossRefGoogle Scholar
  2. Baykasoglu A, Kaplanoglu V, Durmusoglu ZDU, Sahin C (2013) Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection. Expert Syst Appl 40(3):899–907CrossRefGoogle Scholar
  3. Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282. doi: 10.1023/a:1022452626305 CrossRefGoogle Scholar
  4. Blasone R-S, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31(4):630–648. doi: 10.1016/j.advwatres.2007.12.003 CrossRefGoogle Scholar
  5. Boyle DP, Gupta HV, Sorooshian S (2013) Multicriteria Calibration of Hydrologic Models. In: Calibration of Watershed Models. American Geophysical Union, pp 185–196. doi:10.1002/9781118665671.ch14Google Scholar
  6. Chang PC, Chen SH, Fan CY (2009) A hybrid electromagnetism-like algorithm for single machine scheduling problem. Expert Syst Appl 36(2):1259–1267. doi: 10.1016/j.eswa.2007.11.050 CrossRefGoogle Scholar
  7. Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. J Hydrol 268(1–4):72–86. doi: 10.1016/S0022-1694(02)00122-1 CrossRefGoogle Scholar
  8. Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient Calibration Schema for HBV rainfall–runoff model. J Hydrol 444–445(0):161–179. doi: 10.1016/j.jhydrol.2012.04.015 CrossRefGoogle Scholar
  9. de Vos NJ, Rientjes THM (2008) Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour Res 44(8), W08434. doi: 10.1029/2007wr006734 Google Scholar
  10. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi: 10.1109/4235.996017 CrossRefGoogle Scholar
  11. Deckers DLEH, Booij MJ, Rientjes THM, Krol MS (2010) Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall–runoff model. Water Resour Manag 24(14):3961–3985CrossRefGoogle Scholar
  12. Dumedah G (2012) Formulation of the evolutionary-based data assimilation, and its implementation in hydrological forecasting. Water Resour Manag 26(13):3853–3870. doi: 10.1007/s11269-012-0107-0 CrossRefGoogle Scholar
  13. Dumedah G, Berg A, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resour Manag 24(15):4469–4489. doi: 10.1007/s11269-010-9668-y CrossRefGoogle Scholar
  14. Guo J, Zhou J, Zou Q, Liu Y, Song L (2013) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27(8):2923–2946. doi: 10.1007/s11269-013-0324-1 CrossRefGoogle Scholar
  15. Hogue TS, Sorooshian S, Gupta H, Holz A, Braatz D (2000) A multistep automatic calibration scheme for river forecasting models. J Hydrometeorol 1(6):524–542. doi: 10.1175/1525-7541(2000)001<0524:amacsf>;2 CrossRefGoogle Scholar
  16. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications a state-of-the-art survey. Springer, Berlin Heidelberg, pp 12–23CrossRefGoogle Scholar
  17. Khu ST, Madsen H (2005) Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration. Water Resour Res 41(3), W03004. doi: 10.1029/2004wr003041 Google Scholar
  18. Moore RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J 30:273–297CrossRefGoogle Scholar
  19. Qian WY, Li A (2008) Adaptive differential evolution algorithm for multiobjective optimization problems. Appl Math Comput 201(1–2):431–440CrossRefGoogle Scholar
  20. Qin H, Zhou JZ, Lu YL, Li YH, Zhang YC (2010) Multi-objective cultured differential evolution for generating optimal trade-offs in reservoir flood control operation. Water Resour Manag 24(11):2611–2632. doi: 10.1007/s11269-009-9570-7 CrossRefGoogle Scholar
  21. Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference on evolutionary programming:131–136.Google Scholar
  22. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3(3):175–184. doi: 10.1093/comjnl/3.3.175 CrossRefGoogle Scholar
  23. Rucklidge WJ (1997) Efficiently locating objects using the Hausdorff distance. Int J Comput Vis 24(3):251–270CrossRefGoogle Scholar
  24. Sahay R (2012) Erratum to: predicting transient storage model parameters of rivers by genetic algorithm. Water Resour Manag 26(13):3687. doi: 10.1007/s11269-012-0123-0 CrossRefGoogle Scholar
  25. Saleem SM (2001) Knowledge-based solution to dynamic optimization problems using cultural algorithms. Wayne State UniversityGoogle Scholar
  26. Tsou CS, Kao CH (2008) Multi-objective inventory control using electromagnetism-like meta-heuristic. Int J Prod Res 46(14):3859–3874. doi: 10.1080/00207540601182278 CrossRefGoogle Scholar
  27. Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39(8):1214. doi: 10.1029/2002wr001746 Google Scholar
  28. Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi: 10.1029/2002wr001642 Google Scholar
  29. Wang F, Saavedra Valeriano O, Sun X (2013) Near real-time optimization of multi-reservoir during flood season in the Fengman Basin of China. Water Resour Manag 27(12):4315–4335. doi: 10.1007/s11269-013-0410-4 CrossRefGoogle Scholar
  30. Wei N-C, Lin H-K, Wu P (2012) An electromagnetism-like mechanism for solving cell formation problems. Sci Res Essays 7(9):1022–1034. doi: 10.5897/SRE11.967 Google Scholar
  31. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204(1–4):83–97. doi: 10.1016/S0022-1694(97)00107-8 CrossRefGoogle Scholar
  32. Zhang R, Zhou JZ, Wang YQ (2012) Multi-objective optimization of hydrothermal energy system considering economic and environmental aspects. Int J Electr Power Energy Syst 42(1):384–395CrossRefGoogle Scholar
  33. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Eidgenössische Technische Hochschule Zürich (ETH). doi:citeulike-article-id:2815762. doi:  10.3929/ethz-a-004284029

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jianzhong Zhou
    • 1
  • Shuo Ouyang
    • 1
  • Xuemin Wang
    • 1
  • Lei Ye
    • 1
  • Hao Wang
    • 2
  1. 1.School of Hydropower and Information EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.China Institute of Water Resources & Hydropower ResearchBeijingPeople’s Republic of China

Personalised recommendations