Water Resources Management

, Volume 27, Issue 12, pp 4163–4181 | Cite as

Assessment of Trace Metals during Episodic Events using DGT Passive Sampler: A Proposal for Water Management Enhancement

  • J. D. Villanueva
  • P. Le Coustumer
  • F. Huneau
  • M. Motelica-Heino
  • T.R. Perez
  • R. Materum
  • M.V.O. Espaldon
  • S. Stoll


The potential of the Diffusive Gradient Thin-Films (DGT) as a supplemental method for water quality monitoring was employed has been tested through 3 sampling campaigns to measure the trace metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) present in the surface water of a highly urbanized river. Specifically, the study done in the Pasig River (Philippines) seeks to: assess the applicability of DGT passive sampler in an urban context exhibiting highly contrasted hydrological conditions (greatly influenced by episodic events) and sediment disturbance (dredging) and provide proposal for a better water management. The results indicate that: (1) DGT is highly recommended as part of a routine analysis for water quality monitoring; (2) DGT are able to capture the fluxes even in very contrasted flow regimes; (3) DGT are suitable to trace the labile fluxes of metals from the lake to the estuary; and (4) at the confluence of the Marikina River water management should be intensified. Moreover, recommendations were made for developing pertinent water monitoring protocol and management scheme.


Trace metals DGT In-situ passive sampling Surface water Pasig River Philippines 



This research was funded by the Lyonnaise des Eaux Company, Bordeaux, France and was done with the help of the Pasig River Rehabilitation Commission (PRRC), LCDR Christopher Meniado of the Philippine Coast Guards (PCG) and his staff, the Department of Natural Resources and Environment-Environmental Management Bureau (DENR-EMB) and Dr. Gemma Narisma, Genie Lorenzo and James Simpas of the Manila Observatory. The authors are also grateful to the French Embassy in the Philippines for giving financial assistance for field mobility, the European Union ERASMUS MUNDUS External Cooperation Window (ECW) Lot 12/13 and the Programme Eiffel Doctorat (2012–2013) from the French Ministry of Foreign Affairs for providing the academic grant.


  1. Aisopou A, Stoianov I, Graham NJD (2012) In-pipe water monitoring in water supply systems under steady and unsteady state flow conditions: A quantitative assessment. Water Res 46:235–246CrossRefGoogle Scholar
  2. Akrami SA, El-Shafie A, Jaafar O (2013) Improving rainfall forecasting efficiency using modified adaptive Neuro-Fuzzy Inference System (MANFIS). Water Resour Manage 27:3507–3523CrossRefGoogle Scholar
  3. Alexa N, Zhang H, Lead JR (2009) Development of a miniaturized diffusive gradient in thin films (DGT) device. Anal Chim Acta Acta 655:80–85CrossRefGoogle Scholar
  4. Alfaro-De la Torre MC, Beaulieu P-Y, Tessier A (2000) In-situ measurement of trace metals in lakewater using the dialysis and DGT techniques. Anal Chim Acta 418:53–68CrossRefGoogle Scholar
  5. Allan IJ, Knutsson J, Guigues N, Mills GA, Fouillac AM, Greenwood R (2008) Chemcatcher (R) and DGT passive sampling devices or regulatory monitoring of trace metals in surface water. J of Environ Monitor 10:821–829CrossRefGoogle Scholar
  6. Aung NN, Nakajima F, Furumai H (2008) Trace metal speciation during dry and wet weather flows in the Tama River, Japan, by using diffusive gradients in thin films (DGT). J of Environ Monitor 10:219–230CrossRefGoogle Scholar
  7. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102Google Scholar
  8. CCME (Canadian Council of Ministers of the Environment) (1996) Appendix XXII-Canadian water quality guidelines: Updates (December 1996), interim marine and estuarine water quality guidelines, Canadian Council of Resource and Environment Ministers. 1987. Prepared by the Task Force on Water Quality Guidelines.Google Scholar
  9. Cruz RT (1997) Case Study 111-The Pasig River, Philippines. Water pollution control-A guide to the use of water quality management principles WHO/UNEP ISBN 0 419 22910 8Google Scholar
  10. Diamond JM, Winchester EL, Mackler DG, Rasnake WJ, Fanelli JK, Gruber D (1992) Toxicity of cobalt to freshwater indicator species as a function of water hardness. Aquat Toxicol 22(3):163–179. doi: 10.1016/0166-445X(92)90038-O CrossRefGoogle Scholar
  11. Docekalova H, Divis P (2005) Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems. Talanta 65:1174–1178Google Scholar
  12. Eggleton J, Thomas K (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980CrossRefGoogle Scholar
  13. Gay D, Maher W (2003) Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals. Water Res 37:2173–2185CrossRefGoogle Scholar
  14. Gibbs RJ (1973) Mechanisms of trace metal transport in rivers. Science 180:71–73CrossRefGoogle Scholar
  15. Graveline N, Maton L, Luckge H, Rouillard J, Strosser P, Palkaniete K, Rinaudo J-D, Taverne D, Interwies E (2010) An operational perspective on potential uses and constraints of emerging tools for monitoring water quality. TrAC 29:5Google Scholar
  16. Han W, Moore AM, Levin J, Zhang B, Arango HG, Curchitser E, Di Lorenzo E, Gordon AL, Lin J (2009) Seasonal surface ocean circulation and dynamics in the Philippine Archipelago regions during 2004–2008. Dynam of Atmos Oceans 47:114–137CrossRefGoogle Scholar
  17. Harger JRE (1995) ENSO variations and drought occurences in Indonesia and the Philippines. Atmos Environ29:16:1943-1995. 1352-2310(94)00362-9Google Scholar
  18. Hartman J, Levy J, Okada N (2006) Managing surface water contamination in Nagoya, Japan: An integrated water basin management decision framework. Water Resour Manage 20:411–430CrossRefGoogle Scholar
  19. Hartnett M, Wilson JG, Nash S (2011) Irish estuaries: Water quality status and monitoring implications under water framework directive. Mar Policy 35:810–818CrossRefGoogle Scholar
  20. INAP (2002) Diffusive Gradient in Thin-Films (DGT). A Technique for Determining Bioavailable Metal Concentrations. Accessed 28 June 2011.
  21. Janssen CR, Heijerick DG, Schamphelaere D, Allen HE (2003) Environmental risk assessment of metals: tool for incorporating bioavailability. Environ Int 28:793–800CrossRefGoogle Scholar
  22. Khalil B, Ouarda TBMJ, St-Hilaire A, Chebana A (2010) A statistical approach for the rationalization of water quality indicators in surface water quality monitoring networks. J of Hydrol 386:173–185CrossRefGoogle Scholar
  23. Li W, Zhao H, Teasdale PR, Wang F (2005) Trace metal speciation measurements in waters by the liquid binding phase DGT device. Talanta 67(3):571–578CrossRefGoogle Scholar
  24. Lu Y, Wang Z, Huckins J (2002) Review of the background and application of triolein-containing semipermeable membrane devices in aquatic environmental study. Aquat Toxicol 20:139–153CrossRefGoogle Scholar
  25. Masson M, Blanc G, Schafer J, Parlanti E, Le Coustumer P (2011) Copper addition by organic matter degradation in the freshwater reaches of a turbid estuary. Sci Total Environ 409:1539–1549CrossRefGoogle Scholar
  26. Materum R (2010) Physicochemical and particulate characterization of selected urban-impacted aquatic systems in Manila (The Philippines) and Bordeaux (France). Rapport de Stage. FDEA. Université Bordeaux 1Google Scholar
  27. Mazzei F, D’Alessandro A, Lucarelli F, Nava S, Prati P, Valli G, Vecchi R (2008) Characterization of particulate matter sources in an urban environment. Sci Total Environ 401:81–89CrossRefGoogle Scholar
  28. Meyer JS (2002) The utility of the terms “bioavailability” and “bioavailable fractions” for metals. Mar Environ Res 53:417–423CrossRefGoogle Scholar
  29. Moreda-Piñeiro J, Moreda-Piñeiro A, Romaris-Hortas V, Dominguez-Gonzales R, Alonso-Rodriguez E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D, Bermejo-Barrera P (2012) Trace metals in marine foodstuff: Bioavalibility estimation and effect of major food constituents. Food Chem 134:339–345CrossRefGoogle Scholar
  30. Morillo J, Usero J (2008) Trace metal bioavailability in the waters of two different habitats in Spain: Huelva estuary and Algeciras Bay. Ecotox Environ Safe 71:851–859CrossRefGoogle Scholar
  31. Munksgaard NC, Lottermoser BG (2010) Mobility and potential bioavailability of traffic-derived trace metals in a 'wet-dry' tropical region, Northern Australia. Environ Earth Sciences 60(7):1447–1458. doi: 10.1007/s12665-099-0280-5 CrossRefGoogle Scholar
  32. Nalbantis I, Tsakiris G (2009) Assessment of hydrological droughts revisited. Water Resour Manage 23:881–897. doi: 10.1007/s11269-008-9305-1 CrossRefGoogle Scholar
  33. Ouyang Y (2005) Evaluation of river water quality monitoring stations by principal component analysis. Water Res 39:2621–2635CrossRefGoogle Scholar
  34. Pattke T, Oberli F, Audétat A, Guillong M, Simon A, Hanley J, Leonhard K (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusion by laser ablatio, single and multiple collector ICP-MS. Ore Geol Rev 44:10–38CrossRefGoogle Scholar
  35. Pérez AL, Anderson KA (2009) DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications. Sci Total Environ 407:5096–5103CrossRefGoogle Scholar
  36. PRRC (2009) Water quality status of Pasig River system. Unpublished reportGoogle Scholar
  37. Research DGT (2002) DGT-for measurements in water, soils and sediments. DGT Research Ltd, LancasterGoogle Scholar
  38. Schintu M, Durante L, Maccioni A, Meloni P, Degetto S, Contu A (2008) Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Mar Pollut Bull 57:832–837CrossRefGoogle Scholar
  39. Severini MDF, Botte SE, Hoffmeyer MS, Marcovecchio JE (2009) Spatial and temporal distribution of cadmium and copper in water zooplankton in the Bahia Blanca estuary, Argentina. Estuar Coast Shelf S 85:57–66CrossRefGoogle Scholar
  40. Shafer M, Overdier J (1995) Analysis of surface water for Trace Metal Elements by ICP-MS. Revision 4. Water Chemistry Program. University of Wisconsin-Madison, Madison WI 53706Google Scholar
  41. Sherwood JE, Barnett D, Barnett NW, Dover K, Howitt J, Ii H, Kew P, Mondon J (2009) Deployment of DGT units in marine waters to assess the environmental risk from a deep sea tailings outfall. Anal Chim Acta 652:215–223CrossRefGoogle Scholar
  42. Sondergaard J, Bo E, Asmund G (2008) Metal speciation and bioavailability in acid mine drainage from a high Arctic mine waste rock pile: Temporal variations assessed through high-resolution water sampling, geochemical modelling and DGT. Cold Reg Sci Technol 54:89–96CrossRefGoogle Scholar
  43. Strobl RO, Robillard PD (2008) Network design for water quality monitoring of surface freshwaters: A review. Environ Manage 87:639–648CrossRefGoogle Scholar
  44. Thévenot DR, Moilleron R, Lestel L, Gromaire MC, Rocher V, Cambier P, Bonté P, Colin JL, de Pontevés C, Meybeck M (2007) Critical budget of metal sources and pathways in the Seine River basin (1994–2003). The Sci Total Environ 375:180–203CrossRefGoogle Scholar
  45. Tsakiris G (1988) Aggregated runoff from small watersheds based on Stochastic representation of storm events. Water Resour Manage 2:77–86CrossRefGoogle Scholar
  46. USEPA. National Recommended Water Quality Criteria. Accessesed 24 April 2012
  47. Van Den Berg GA, Meijers GGA, Van Der Heijdt LM, Zwolsman, JJG (2001) Dregding-related mobilisation of trace metals: A case study in the Netherlands. Wat Res 35:8: 1979–1986. PII:S0043-1354(00)00452-8Google Scholar
  48. Vrana B, Mills AG, Allan IJ, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. TrAC 24(10):845–868Google Scholar
  49. Vystavna Y, Huneau F, Motelica-Heino M, Le Coutumer P, Vergeles Y, Stolberg F (2012a) Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers. Environ Earth Sci 65(6):1715–1725CrossRefGoogle Scholar
  50. Vystavna Y, Huneau F, Schafer J, Motelica-Heino M, Blanc G, Larrose A, Vergeles Y, Dyadin D, Le Coustumer P (2012b) Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Appl Geochem 27:2077–2087CrossRefGoogle Scholar
  51. Wei GL, Yang ZF, Cui BS, Li B, Chen H, Bai JH, Dong SK (2009) Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. Water Resour Manag 23:1763–1780. doi: 10.1007/S11269-008-9351-8 CrossRefGoogle Scholar
  52. Wetzel RG (2001) Limnology. Lake and river ecosystem 3rd Edition. Elsevier. Academic Press, USAGoogle Scholar
  53. Winn PJS, Young RM, Edwards AMC (2003) Planning for the rising tides: the Humber Estuary Shoreline Management Plan. Sci Total Environ 314–316:13–30CrossRefGoogle Scholar
  54. Wu Y, Falconer R, Lin B (2005) Modelling trace metal concentrations distributions in estuarine waters. Estuar Coast Shelf S 64:699–709CrossRefGoogle Scholar
  55. Yapici T, Fasfous II, Murimboh J, Chakrabarti CL (2008) Investigation of DGT as a metal speciation technique for municipal wastes and aqueous mine effluents. Anal Chim Acta 622:70–76CrossRefGoogle Scholar
  56. Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in-situ measurements of trace metals in aqueous solution. Anal Chem 67:3391–3400CrossRefGoogle Scholar
  57. Zhang H, Davison W (1999) Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal Chim Acta 398:329–340CrossRefGoogle Scholar
  58. Zheng J, Takata H, Tagami K, Aono T, Fujita K, Uchida S (2012) Rapid determination of total iodine in Japanese coastal seawater using SF-ICP-MS. Microchem J 100:42–47CrossRefGoogle Scholar
  59. Zwolsman JJG, Van Eck BTM, Van der Weijden CH (1997) Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt estuary, southwestern Netherlands: Impact of seasonal variability. Geochim Cosmichim Acta 61(8):1635–1652CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. D. Villanueva
    • 1
    • 2
  • P. Le Coustumer
    • 1
  • F. Huneau
    • 3
    • 4
  • M. Motelica-Heino
    • 5
  • T.R. Perez
    • 6
  • R. Materum
    • 1
  • M.V.O. Espaldon
    • 2
  • S. Stoll
    • 7
  1. 1.Université de Bordeaux, EA 4592 Géoressources & Environnement, ENSEGIDPessacFrance
  2. 2.University of the Philippines Los Baños, School of Environmental Science and Management, CollegeLagunaPhilippines
  3. 3.Laboratoire d’HydrogéologieUniversité de Corse Pascal Paoli, Faculté des Sciences et Techniques, Campus Grimaldi, BP 52CorteFrance
  4. 4.CNRS, UMR 6134, SPECorteFrance
  5. 5.Université d’Orléans, UMR CNRS 7327, ISTO, Campus GéosciencesOrléansFrance
  6. 6.Department of Environmental ScienceAteneo de Manila UniversityQuezon CityPhilippines
  7. 7.Institute Forel, University of Geneva, Environmental Physical ChemistryVersoixSwitzerland

Personalised recommendations