Advertisement

Water Resources Management

, Volume 27, Issue 10, pp 3623–3630 | Cite as

Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2

  • Nikolai B. GorevEmail author
  • Inna F. Kodzhespirova
Article

Abstract

To analyze water distribution networks under pressure-deficient conditions, most of the available hydraulic simulators, including EPANET 2, must be either modified by embedding pressure-dependent demands in the governing network equations or run repeatedly with successive adjustments made to specific parameters until a sufficient hydraulic consistency is obtained. This paper presents and discusses a simple technique that implements the square root relationship between the nodal demand and the nodal pressure using EPANET 2 tools and allows a water distribution network with pressure-dependent demands to be solved in a single run of the unmodified snapshot hydraulic analysis engine of EPANET 2. In this technique, artificial strings made up of a flow control valve, a pipe with a check valve, and a reservoir are connected to the demand nodes before running the engine, and the pressure-dependent demands are determined as the flows in the strings. The resistance of the artificial pipes is chosen such that the demands are satisfied in full at a desired nodal pressure. The proposed technique shows reasonable convergence as evidenced by its testing on example networks.

Keywords

Water distribution Demand-driven analysis Pressure-dependent demand Hydraulic simulator 

References

  1. Ang WH, Jowitt PW (2006) Solution for water distribution systems under pressure-deficient conditions. J Water Resour Plan Manag 13((3):175–182. doi: 10.1061/(ASCE)0733-9496(2006)132:3(175) CrossRefGoogle Scholar
  2. Babu KSJ, Mohan S (2012) Extended period simulation for pressure-deficient water distribution network. J Comput Civ Eng 26(4):498–505. doi: 10.1061/(ASCE)CP.1943-5487.0000160 CrossRefGoogle Scholar
  3. Estrada S, González C, Aloid R, Paño J (2009) Improved pressurized pipe network hydraulic solver for applications in irrigation systems. J Irrig Drain Eng 135(4):421–430. doi: 10.1061/(ASCE)IR.1943-4774.0000100 CrossRefGoogle Scholar
  4. Fujiwara O, Ganesharajah T (1993) Reliability assessment of water supply systems with storage and distribution networks. Water Resour Res 29(8):2917–2924CrossRefGoogle Scholar
  5. Gorev NB, Kodzhespirova IF, Kovalenko Y, Prokhorov E, Trapaga G (2012) A method to cope with zero flows in Newton solvers for water distribution systems. J Hydraul Eng 139(4):456–459. doi: 10.1061/(ASCE)HY.1943-7900.0000694 CrossRefGoogle Scholar
  6. Guistolisi O, Savic D, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626–635. doi: 10.1061/(ASCE)0733-9429(2008)134:5(626) CrossRefGoogle Scholar
  7. Gupta R, Bhave PR (1996) Comparison of methods for predicting deficient network performance. J Water Resour Plan Manag 122(3):214–217CrossRefGoogle Scholar
  8. Milan C (2010) Hybrid genetic algorithm and linear programming method for least-cost design of water distribution systems. Water Resour Manag 24(1):1–24. doi: 10.1007/s11269-009-9434-1, 10.1007%2fs11269-009-9434-1CrossRefGoogle Scholar
  9. Pathirana A (2010). EPANET 2 desktop application for pressure driven demand modeling. Proceedings of the 12th Annual Water Distribution Systems Analysis Conference, WDSA 2010, September 12–15, Tucson, ArizonaGoogle Scholar
  10. Rossman LA (2000) EPANET 2 User’s Manual, Water Supply and Water Resources Division. National Risk Management Research Laboratory, CincinnatiGoogle Scholar
  11. Siew C, Tanyimboh TT (2012) Pressure-dependent EPANET extension. Water Resour Manag 26(6):1477–1498. doi: 10.1007/s11269-011-9968-x CrossRefGoogle Scholar
  12. Spiliotis M, Tsakiris G (2011) Water distribution system analysis: Newton–Raphson method revisited. J Hydraul Eng 137(8):852–855. doi: 10.1061/(ASCE)HY.1943-7900.0000364 CrossRefGoogle Scholar
  13. Spiliotis M, Tsakiris G (2012) Water distribution network analysis under fuzzy demands. Civ Eng Environ Syst 29(2):107–122. doi: 10.1080/10286608.2012.663359 CrossRefGoogle Scholar
  14. Suribabu CR, Neelakantan TR (2011) Balancing reservoir based approach for solution to pressure deficient water distribution networks. Int J Civ Struct Eng 2(2):648–656. doi: 10.6088/ijcser.00202010139 Google Scholar
  15. Tabesh M, Tanyimboh TT, Burrows R (2002) Head-driven simulation of water supply networks. IEJ Trans A: Basics 15(1):11–22Google Scholar
  16. Tanyimboh TT, Templeman AB (2010) Seamless pressure-deficient water distribution system model. Proc ICE—Water Manag 163(8):389–396. doi: 10.1680/wama.900013 CrossRefGoogle Scholar
  17. Todini E (2003) A more realistic approach to the “extended period simulation” of water distribution networks. In: Maksimovic C, Butler D, Memon FA (eds) Advances in Water Supply Management. A. A. Balkema Lisse, The Netherlands, pp 173–184Google Scholar
  18. Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability: simulation methods. J Water Resour Plan Manag 114(3):276–294CrossRefGoogle Scholar
  19. Wu YW, Wang RH, Walski TM, Yang SY, Bowdler D, Baggett CC (2009) Extended global-gradient algorithm for pressure-dependent water distribution analysis. J Water Resour Plan Manag 135(1):13–22. doi: 10.1061/(ASCE)0733-9496(2009)135:1(13) CrossRefGoogle Scholar
  20. Yoo DG, Suh MY, Kim JH, Jun H, Chung G (2012) Subsystem-based pressure dependent demand analysis in water distribution systems using effective supply. KSCE J Civ Eng 16(3):457–464. doi: 10.1007/s12205-012-1448-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department for Functional Elements of Control SystemsInstitute of Technical MechanicsDnepropetrovskUkraine

Personalised recommendations