Advertisement

Water Resources Management

, Volume 27, Issue 3, pp 885–909 | Cite as

Model Based Assessment of Nitrate Pollution of Water Resources on a Federal State Level for the Dimensioning of Agro-environmental Reduction Strategies

The North Rhine-Westphalia (Germany) Case Study
  • Petra Kuhr
  • Josef Haider
  • Peter Kreins
  • Ralf Kunkel
  • Björn Tetzlaff
  • Harry Vereecken
  • Frank Wendland
Article

Abstract

The main goal of the project was to assess nitrogen pollution of surface waters and groundwater in the Federal State of North Rhine Westphalia (NRW), Germany. For this purpose the hydro(geo-)logical models GROWA-DENUZ/WEKU were coupled to the agro-economic model RAUMIS in order to assess the diffuse nitrogen loads and to approaches to determine the nitrogen loads from point sources. In this way the complex socio-economic interrelations and hydrological/hydrogeological interdependencies were simultaneously. The model network was applied consistently across the whole territory of NRW. At first the actual N inputs into groundwater and surface waters resulting from diffuse sources and point sources were assessed. For the relevant diffuse input pathways (groundwater runoff, drainage runoff and natural interflow) this was done in a spatial resolution of 100 m ∙ 100 m. In the case of point source inputs information from municipal waste water treatment plants, industrial effluents, rainwater sewers and combined sewer overflows has been considered. For NRW an actual total N input into surface waters of ca. 117.000 t ∙ a−1 N has been quantified. As the inputs via natural interflow (ca. 30 %), groundwater runoff (ca. 26 %) and drainage systems (ca. 18 %) hold the largest portion, it is evident that measures to control nitrate pollution have to focus on the inputs from diffuse sources. For this purpose, initially the development of the agrarian sector according to the Common Agricultural Policy, CAP until 2015 including supplementary measures and other impact factors has been analysed. The impact of this so-called baseline scenario 2015 was predicted for both, the diffuse N surpluses and the N pollution of groundwater and surface waters. It could be shown that the baseline projections for the agricultural sector through 2015 may lead to decrease of the diffuse N inputs into groundwater by ca. 13.500 t ∙ a−1 N and an overall decrease of the diffuse N inputs into surface waters by ca. 25.000 kg ∙ ha−1 ∙ a−1 N. Based on the baseline scenario 2015 the additional N reduction to guarantee nitrate concentrations in groundwater below the EU-threshold value of 50 mg ∙ l−1 NO3 was determined by means of a backward model calculation. This was done using the predicted nitrate concentrations in the leachate 2015 for the individual 100 m ∙ 100 m grids as starting points. In this way for the whole territory of NRW an additional N reduction beyond the baseline scenario 2015 of ca. 12.000 t ∙ a−1 N has been assessed. Model results indicate that additional N reduction measures don’t have to be implemented area-covering in order to be efficient, but in certain subareas only. It is suggested that in these subareas the available financial resources for the implementation of N reduction measures shall be used for individual, i.e. regionally adapted nitrate reduction measures.

Keywords

Water framework directive Nitrate pollution Groundwater Surface waters Nitrate modelling Agro-environmental management 

References

  1. Aftab A, Hanley N, Kampas A (2007) Coordinated environmental regulation: controlling nonpoint nitrate pollution while maintaining river flows. Environ Resource Econ 38:573–593CrossRefGoogle Scholar
  2. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J Hydrol 227:21–40CrossRefGoogle Scholar
  3. Assimacopoulos D (2006) Allocation of water resources and cost under scarcity: a case study. Proceedings of the International Workshop on Hydro-Economic Modelling and Tools for implementation of the European Water Framework Directive. Valencia, Spain. January 2006Google Scholar
  4. Bazzani G, Pasquale S, Gallerani V, Morganti S, Raggi M, Viaggi D (2004) The impact of the EU water framework directive on irrigated agriculture in Italy: the case of the north-east fruit district. Agric Econ Rev 5:36–44Google Scholar
  5. Behrendt H, Opitz D (2000) Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122CrossRefGoogle Scholar
  6. Bogena H, Kunkel R, Schöbel T, Schrey HP, Wendland F (2005) Distributed modeling of groundwater recharge at the macroscale. Ecol Model 187:15–26CrossRefGoogle Scholar
  7. Böttcher P, Strebel O, Duynisveld WHM (1989) Kinetik und Modellierung gekoppelter Stoffumsetzungen im Grundwasser eines Lockergesteinsaquifer. Geol J C51:3–40Google Scholar
  8. Bremner JM, Shaw K (1958) Denitrification in soil. II: factors affecting denitrification. J Agr Sci 51:40–52CrossRefGoogle Scholar
  9. Brouwer R, Hofkes M, Linderhof V (2008) General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale. Ecol Econ 66:127–140CrossRefGoogle Scholar
  10. Burford JR, Bremner JM (1975) Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394CrossRefGoogle Scholar
  11. EU-GWD (2006) Directive 2006/118/EC of the European parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Communities. L 372/19Google Scholar
  12. EU-WFD (2000) Directive 2000/60/EC of the European parliament and the council of the European union of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communities. L:327/1Google Scholar
  13. Fezzi C, Hutchins M, Rigby D, Bateman IJ, Posen P, Hadley D (2010) Integrated assessment of water framework directive nitrate reduction measures. Agr Econ-Blackwell 41:123–134CrossRefGoogle Scholar
  14. Gauger T, Haenel HD, Rösemann C, Dämmgen U, Bleeker A, Erisman JW, Vermeulen AT, Schaap M, Timmermanns RMA, Builtjes PJH, Duyzer JH (2008) National implementation of the UNECE convention on long-range transboundary air pollution (effects) Part 1: deposition loads: methods, modelling and mapping results, trends. UFOPLAN FKZ 204 63 252, UBA-Texte 38/08, 231 S.Google Scholar
  15. Gebel M, Halbfaß S, Lorz C (2010) Evaluation of critical source areas to reduce nutrient loading from agriculture in river basins in Saxony/Germany. In: Turtola E, Ekholm P, Chardon W (eds) Novel methods for reducing agricultural nutrient loading and eutrophication, meeting of cost 869, 14–16 June, Jokioinen, Finland. MTT Science 10, 30Google Scholar
  16. Gömann H, Kreins P, Kunkel R, Wendland F (2003) Koppelung agrarökonomischer und hydrologischer modelle. Agrarwirtschaft 52:195–203Google Scholar
  17. Gömann H, Kreins P, Kunkel R, Wendland F (2005) Model based impact analysis of policy options aiming at reducing diffuse pollution by agriculture—a case study for the river Ems and a sub-catchment of the Rhine. Environ Modell Softw 20:261–271CrossRefGoogle Scholar
  18. Green MB, Wollheim WM, Basu NB, Gettel G, Rao PS, Morse N, Stewart R (2009) Effective denitrification scales predictably with water residence time across diverse systems. Nature Precedings. doi: 10101/npre.2009.3520.1
  19. Groenendijk P, Renaud LV, Roelsma J, Griffioen J, van der Grift B, Janssen G, Jansen S (2008) Compliance checking level of nitrate in groundwater. Investigations of lowering the depth to 5 m below the phreatic surface with a regional leaching model. Wageningen, Alterra, Alterrareport_18_09_08.doc. 149Google Scholar
  20. Heinz I, Pulido-Velazquez M, Lund JR, Andreu J (2007) Hydro-economic modeling in river basin management: implications and applications for the European water framework directive. Water Resour Manage 21:1103–1125CrossRefGoogle Scholar
  21. Henrichsmeyer W, Cypris C, Löhe W, Meudt M, Sander R, von Sothen F, Isermeyer F, Schefski A, Schleef KH, Neander E, Fasterding F, Helmcke B, Neumann M, Nieberg H, Manegold D, Meier T (1996) Entwicklung eines gesamtdeutschen Agrarsektormodells RAUMIS96. Endbericht zum Kooperationsprojekt. Forschungsbericht für das BML (94 HS 021), reproduced manuscript Bonn/BraunschweigGoogle Scholar
  22. Hirt U, Venohr M, Kreins P, Behrendt H (2008) Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany. Water Sci Technol 58:2251–2258CrossRefGoogle Scholar
  23. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668CrossRefGoogle Scholar
  24. Kreins P, Gömann H, Henrichsmeyer W (2002) Auswirkungen der Vorschläge der EU-Kommission im Rahmen der Agenda 2000 Halbzeitbewertung auf Produktion, Faktoreinsatz und Einkommen der deutschen Landwirtschaft—Modellanalysen auf der Grundlage des Agrarsektormodells RAUMIS. In Agra-Europe 29.7.2002 Nr. 31, special editionGoogle Scholar
  25. Kreins P, Gömann H, Herrmann S, Kunkel R, Wendland F (2007) Integrated agricultural and hydrological modeling within an intensive livestock region. Adv Econ Environ Resources 7:113–142CrossRefGoogle Scholar
  26. Kreins P, Behrendt H, Gömann H, Hirt U, Kunkel R, Seidel K, Tetzlaff B, Wendland F (2010) Analyse von Agrar- und Umweltmaßnahmen im Bereich des landwirtschaftlichen Gewässerschutzes vor dem Hintergrund der EG-Wasserrahmenrichtlinie in der Flussgebietseinheit Weser—AGRUM Weser. Braunschweig: vTI, 342 Seiten, Landbauforschung—vTI agriculture and forestry research: Sonderheft 336Google Scholar
  27. Kunkel R, Wendland F (1997) WEKU—A GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ Geol 30:1–9CrossRefGoogle Scholar
  28. Kunkel R, Wendland F (2002) The GROWA98 model for water balance analysis in large river basins—the river Elbe case study. J Hydrol 259:152–162CrossRefGoogle Scholar
  29. Kunkel R, Wendland F (2006) Diffuse Nitrateinträge in die Grund- und Oberflächengewässer von Rhein und Ems. Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, vol 62. Forschungszentrum Jülich GmbH, JülichGoogle Scholar
  30. Kunkel R, Wendland F, Albert H (1999) Zum Nitratabbau in den grundwasserführenden Gesteinsschichten des Elbeeinzugsgebietes. Wasser Boden 51:16–19Google Scholar
  31. Kunkel R, Bach M, Behrendt H, Wendland F (2004) Groundwater-borne nitrate intakes into surface waters in Germany. Water Sci Technol 49:11–19Google Scholar
  32. Kunkel R, Bogena H, Tetzlaff B, Wendland F (2006) Digitale Grundwasserneubildungskarte von Niedersachsen, Nordrhein-Westfalen, Hamburg und Bremen: Erstellung und Auswertungsbeispiele. Hydrol Wasserbewirsch 50:212–219Google Scholar
  33. Kunkel R, Eisele M, Schäfer W, Tetzlaff B, Wendland F (2008) Planning and implementation of nitrogen reduction measures in catchment areas based on a determination and ranking of target areas. Desalination 226:1–12CrossRefGoogle Scholar
  34. Larsson MH, Kyllmar K, Jonasson L, Johnsson H (2005) Estimating reduction of nitrogen leaching from arable land and the related costs. Ambio 34(7):538–543Google Scholar
  35. Lindenschmidt KE, Hattermann F, Mohaupt V, Merz B, Kundzewicz ZW, Bronstert A (2007) Large-scale hydrological modelling and the water framework directive and floods directive of the European Union—10th workshop on large-scale hydrological modelling. Adv Geosci 11:1–6CrossRefGoogle Scholar
  36. Mosier AR, Doran JW, Freney JR (2002) Managing soil denitrification. J Soil Water Conserv 57:505–512Google Scholar
  37. Moss T (2004) The governance of land use in river basins: prospects for overcoming problems of institutional interplay with the EU water framework directive. Land Use Policy 21:85–94CrossRefGoogle Scholar
  38. Müller U (2004) Auswertungsmethoden im Bodenschutz—Dokumentation zur Methodendatenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Arb.-H. Boden, H. 2004/2, 1-409Google Scholar
  39. Mysiak J, Sigel K (2005) Sources of uncertainty in economic analysis of the water framework directive. Water Sci Technol 52:161–166Google Scholar
  40. MUNLV (Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen) (2009) Bewirtschaftungsplan für die nordrhein-westfälischen Anteile von Rhein, Weser, Ems und Maas 2010–2015, 633 SGoogle Scholar
  41. NLFB (2005) Grundwasser—Methodenbeschreibung. EG-WRRL Bericht 2005. Niedersächsisches Landesamt für Bodenforschung (NLfB), Niedersächsisches Landesamt für Ökologie (NLÖ), HannoverGoogle Scholar
  42. OSPAR Commission (1998) principles of the comprehensive study on riverine inputs and direct discharges (rid) reference 1998–2005, o.o., 16 sGoogle Scholar
  43. Pauwels H, Foucher JC, Kloppmann W (2000) Denitrification and mixing in a schist aquifer: influence on water chemistry and isotopes. Chem Geol 168:307–324CrossRefGoogle Scholar
  44. Peschke G (1997) Der komplexe Prozess der Grundwasserneubildung und Methoden zu ihrer Bestimmung. In: Leibundgut C, Demuth S (eds) Grundwasserneubildung. Freibg Schr Hydrol 5:1–13Google Scholar
  45. Pulido-Velazquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Plan Manage 132:454–467CrossRefGoogle Scholar
  46. Renger M, Wessolek G (1996) Berechnung der Verdunstungs-Jahressummen einzelner Jahre. DVWK-Merkblätter zur Wasserwirtschaft 238:295–305Google Scholar
  47. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090CrossRefGoogle Scholar
  48. Shaffer MJ, Wylie BK, Hall MD (1995) Identification and mitigation of nitrate leaching hot spots using NLEAP-GIS technology. J Contam Hydrol 20:253–263CrossRefGoogle Scholar
  49. Simmers J (1988) Estimation of natural groundwater recharge, NATO ASI series C: V. 222. D. Reidel Publishing Co, BostonGoogle Scholar
  50. Tetzlaff B, Wendland F (2007) P-pollution in a heavily urbanized river basin from point and diffuse sources—the river Ruhr case study (Germany). Water Sci Technol 56:29–37Google Scholar
  51. Tetzlaff B, Vereecken H, Kunkel R, Wendland F (2008a) Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environ Geol. doi: 10.1007/s00254-008-1293-1
  52. Tetzlaff B, Kuhr P, Wendland F (2008b) Ein neues Verfahren zur differenzierten Ableitung von Dränflächenkarten für den mittleren Maßstabsbereich auf Basis von Luftbildern und Geodaten. Hydrol Wasserbewirtsch 52:9–18Google Scholar
  53. Tetzlaff B, Kuhr P, Vereecken H, Wendland F (2009) Aerial photograph-based delineation of artificially drained areas and their relevance for water balance and nutrient modeling in large river basins. Phys Chem Earth 34:552–564CrossRefGoogle Scholar
  54. US Soil Conservation Service (1972) National engineering handbook (chapter 4: hydrology), 2nd edn. U.S. Dept. of Agriculture, Washington, DCGoogle Scholar
  55. van Beek CGEM (ed) (1987) Landbouw en Drinkwatervoorziening, orientierend Onderzoek naar de Beinvloeding can de Grondwaterkwaliteit door Bemesting en het Gebruik van Bestrijdingsmiddelen; Onderzoek 1982–1987. Report Meded. 99, Keuringsinstituut voor Waterleidingsartikelen KIWA N.V., 99, Nieuwegein, The NetherlandsGoogle Scholar
  56. van der Veeren RJHM, Tol RSH (2001) Benefits of a reallocation of nitrate emission reductions in the Rhine river basin. Environ Resource Econ 18:19–41CrossRefGoogle Scholar
  57. Weingarten P (1995) Das “Regionalisierte Agrar- und Umweltinformationssystem für die Bundesrepublik Deutschland” (RAUMIS). Ber Landwirtsch 73:272–302Google Scholar
  58. Wendland F, Kunkel R, Tetzlaff B, Dorhofer G (2003) GISbased determination of the mean long-term groundwater recharge in Lower Saxony. Environ Geol 45:273–278CrossRefGoogle Scholar
  59. Wendland F, Kunkel R, Voigt HJ (2004) Assessment of groundwater residence times in the pore aquifers of the River Elbe Basin. Environ Geol 46:1–9Google Scholar
  60. Wendland F, Bogena H, Goemann H, Hake JF, Kreins P, Kunkel R (2005) Impact of nitrogen reduction measures on the nitrogen loads of the river Ems and Rhine (Germany). Phys Chem Earth 30:527–541CrossRefGoogle Scholar
  61. Wendland F, Kunkel R, Gömann H, Kreins P (2007) Water fluxes and diffuse nitrate pollution at the river basin scale: interfaces for the coupling of agroeconomical models with hydrological approaches. Water Sci Technol 55:133–142Google Scholar
  62. Wendland F, Behrendt H, Gömann H, Hirt U, Kreins P, Kuhn U, Kunkel R, Tetzlaff B (2009) Determination of nitrogen reduction levels necessary to reach groundwater quality targets in large river basins—the Weser basin case study, Germany.- nutrient cycling in agroecosystems. Nutr Cycl Agroecosys 85:63–78CrossRefGoogle Scholar
  63. Yang YS, Wang L (2010) A review of modelling tools for implementation of th EU water framework directive in handling diffuse water pollution. Water Resour Manage 24:1819–1843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Petra Kuhr
    • 1
  • Josef Haider
    • 2
  • Peter Kreins
    • 3
  • Ralf Kunkel
    • 1
  • Björn Tetzlaff
    • 1
  • Harry Vereecken
    • 1
  • Frank Wendland
    • 1
  1. 1.Forschungszentrum Jülich (FZJ), Institute of Bio- and Geosciences - Agrosphere (IBG-3)JülichGermany
  2. 2.Landesamt für Natur, Umwelt und Verbraucherschutz NRW - Auf dem Draap 25DüsseldorfGermany
  3. 3.Johann Heinrich von Thünen-Institut (vTI), Institut für Ländliche RäumeBraunschweigGermany

Personalised recommendations