Advertisement

Water Resources Management

, Volume 26, Issue 13, pp 3853–3870 | Cite as

Formulation of the Evolutionary-Based Data Assimilation, and its Implementation in Hydrological Forecasting

  • Gift Dumedah
Article

Abstract

Multi-objective evolutionary algorithms (MOEAs) have gained popularity for their capability to handle complex and nonlinear problems. MOEAs are population-based search tools which employ the concept of biological evolution and natural selection. While MOEAs have been applied in numerous hydrological studies for parameter estimation, their formulation for solving data assimilation (DA) problems has not been completely formalized in the literature. This study presents the evolutionary-based data assimilation (EDA) where it formulates the MOEA strategy into an applied DA procedure. The study outlines the stochastic and adaptive capabilities of MOEAs, and shows how MOEA operators including Pareto dominance, crossover, and random variation are naturally suited to handle DA problems. The EDA employs the cost function from variational DA to approximate the least squares estimate between ensemble simulations and perturbed observation. The EDA uses the MOEA strategy to evolve a population of competing members through several cycles of evolution at each assimilation step. The EDA determines several non-dominated members for each assimilation time step, allows these members to evolve, and evaluate updated members for subsequent time steps. Several ensemble members are evaluated for each assimilation time step but the updated ensembles are determined as a subset of the final evolved population which comprise the Pareto-optimal set. The EDA has been illustrated in a practical implementation to assimilate daily streamflow into the Sacramento Soil Moisture Accounting model.

Keywords

Multi-objective evolutionary algorithms Model-data integration Pareto-optimality 

References

  1. Baños R, Reca J, Martínez J, Gil C, Márquez A (2011) Resilience indexes for water distribution network design: a performance analysis under demand uncertainty. Water Resour Manag 25:2351–2366. doi: 10.1007/s11269-011-9812-3 CrossRefGoogle Scholar
  2. Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341:165–176CrossRefGoogle Scholar
  3. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36CrossRefGoogle Scholar
  4. Beven KJ (2000) Uniqueness of place and process representation in hydrological modeling. Hydrol Earth Syst Sci 4(1):203–213CrossRefGoogle Scholar
  5. Chemin Y, Honda K (2006) Spatiotemporal fusion of rice actual evapotranspiration with genetic algorithms and an agrohydrological model. IEEE Trans Geosci Remote Sens 44(11):3462–3469CrossRefGoogle Scholar
  6. Coello Coello CA, Pulido GT (2001) A micro-genetic algorithm for multiobjective optimization. In: Zitlzer E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First int. conf. on evolutionary multi-criterion optimization. No. Lecture notes in computer science no 1993, pp 126–140Google Scholar
  7. Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer/Plenum, New York, N.Y.Google Scholar
  8. Confesor RB, Whittaker GW (2007) Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. JAWRA 43(4):981–989Google Scholar
  9. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Spector L, Goodman E, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Genetic and evolutionary computation conf. Morgan Kaufmann, San Francisco, California, USA, pp 283–290Google Scholar
  10. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester, New YorkGoogle Scholar
  11. Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  12. Dick G (2005) A comparison of localised and global niching methods. 17th Annual Colloquium of the Spatial Information Research Centre, University of Otago, Dunedin, New ZealandGoogle Scholar
  13. Dumedah G, Berg AA, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-ii. Water Resour Manag 24(15):4469–4489. doi: 10.1007/s11269-010-9668-y CrossRefGoogle Scholar
  14. Dumedah G, Berg AA, Wineberg M (2011a) An integrated framework for a joint assimilation of brightness temperature and soil moisture using the non-dominated sorting genetic algorithm-ii. J. Hydrometeorol. 12(2):1596–1609. doi: 10.1175/JHM-D-10-05029.1 CrossRefGoogle Scholar
  15. Dumedah G, Berg AA, Wineberg M (2011b) Pareto-optimality and a search for robustness: choosing solutions with desired properties in objective space and parameter space. J Hydroinform. doi: 10.2166/hydro.2011.120 Google Scholar
  16. Dumedah G, Berg AA, Wineberg M (2012) Evaluating auto-selection methods used for choosing solutions from pareto-optimal set: does non-dominance persist from calibration to validation phase? J Hydrol Eng 17(1):150–159. doi: 10.1061/(ASCE)HE.1943-5584.0000389 CrossRefGoogle Scholar
  17. Efstratiadis A, Koutsoyiannis D (2008) Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing-simplex approach. Practical Hydroinformatics, pp 259–273Google Scholar
  18. Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55(1):58–78CrossRefGoogle Scholar
  19. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. SpringerGoogle Scholar
  20. Evensen G (1994) Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162. doi: 10.1029/94JC00572 CrossRefGoogle Scholar
  21. Evensen G (2003) The ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367CrossRefGoogle Scholar
  22. Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural Netw: Special Issue on Evolutionary Computation 5(1):3–14Google Scholar
  23. Goldberg DE (1989) Genetic algorithms in search optimization, and machine learning. Addison-Wesley, Reading, MA, 432 ppGoogle Scholar
  24. Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings on Radar and Signal Processing 140(2):107–113. doi: 10.1049/ip-f-2.1993.0015 CrossRefGoogle Scholar
  25. Ines A, Mohanty B (2008) Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties under different hydroclimatic conditions. Vardose Zone Journal 7(1):39–52CrossRefGoogle Scholar
  26. Ines A, Mohanty B (2009) Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: 2. Using airborne remote sensing during SGP97 and SMEX02. Water Resour Res 45:W01408CrossRefGoogle Scholar
  27. Khu ST, Madsen H (2005) Multiobjective calibration with pareto preference ordering: An application to rainfall-runoff model calibration. Water Resour Res 41(3):W03004CrossRefGoogle Scholar
  28. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172CrossRefGoogle Scholar
  29. Mahfoud SW (1995) Niching methods for genetic algorithms. Ph.D. thesis, Department of General Engineering, University of Illinois at Urbana-Champaign, Urbana, IllinoisGoogle Scholar
  30. Mantoglou A, Kourakos G (2007) Optimal groundwater remediation under uncertainty using multi-objective optimization. Water Resour Manag 21:835–847. doi: 10.1007/s11269-006-9109-0 CrossRefGoogle Scholar
  31. Nazemi A, Yao X, Chan A (2006) Extracting a set of robust pareto-optimal parameters for hydrologic models using NSGA-II and SCEM. 2006 IEEE congress on evolutionary computation, pp 1901–1908. doi: 10.1109/CEC.2006.1688539
  32. Qin H, Zhou J, Lu Y, Li Y, Zhang Y (2010) Multi-objective cultured differential evolution for generating optimal trade-offs in reservoir flood control operation. Water Resour Manag 24:2611–2632. doi: 10.1007/s11269-009-9570-7 CrossRefGoogle Scholar
  33. Sareni B, Laurent K (1998) Fitness sharing and niching methods revisited. IEEE Trans Evol Comput 2(3):97–106CrossRefGoogle Scholar
  34. Singh A, Minsker B, Goldberg DE (2003) Combining reliability and Pareto Optimality—an approach using stochastic multi-objective genetic algorithms. World Water and Environmental Resources Congress 2003, American Society of Civil Engineers (ASCE) Environmental and Water Resources Institute (EWRI), Philadelphia, PAGoogle Scholar
  35. Tang Y, Reed P, Wagener T (2006) How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol Earth Syst Sci 10:289–307CrossRefGoogle Scholar
  36. Van Leeuwen PJ (2009) Particle filtering in geophysical systems. Mon Weather Rev 137(12):4089–4114CrossRefGoogle Scholar
  37. Vrugt JA, Gupta HV, Dekker SC, Sorooshian S, Wagener T, Bouten W (2006a) Application of stochastic parameter optimization to the sacramento soil moisture accounting model. J Hydrol 325(1–4):288–307CrossRefGoogle Scholar
  38. Vrugt JA, Gupta HV, Nuallain BO, Bouten W (2006b) Real-time data assimilation for operational ensemble streamflow forecasting. J Hydrometeorol 7(3):548–565CrossRefGoogle Scholar
  39. Wei Z, Yang D, Wang X, Wang J (2009) Multi-objectives optimal model of heavy equipment using improved strength pareto evolutionary algorithm. Int J Adv Manuf Technol 45:389–396. doi: 10.1007/s00170-009-1962-6 CrossRefGoogle Scholar
  40. Yang C-C, Chang L-C, Chen C-S, Yeh M-S (2009) Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water Resour Manag 23:417–437. doi: 10.1007/s11269-008-9281-5 CrossRefGoogle Scholar
  41. Zitzler E, Laumanns M, Thiele L (2001) Improving the strength pareto evolutionary algorithm. TIK-Report 103, Swiss Fed. Inst. Technol., Zurich, SwitzerlandGoogle Scholar
  42. Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Gandibleux X et al (eds) Metaheuristics for multiobjective optimisation. Lecture notes in economics and mathematical systems. SpringerGoogle Scholar

Copyright information

© © Her Majesty the Queen in Right of Australia 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations