Water Resources Management

, Volume 26, Issue 6, pp 1513–1535 | Cite as

Value of Information as a Context-Specific Measure of Uncertainty in Groundwater Remediation

  • Xiaoyi Liu
  • Jonghyun Lee
  • Peter K. Kitanidis
  • Jack Parker
  • Ungtae Kim
Article

Abstract

The remediation of groundwater sites has been recognized as a difficult and expensive task for years. One of the challenges is that the success of remediation is usually contingent upon an appropriate level of characterization of the physical, chemical, and biological site properties. For example, thermal treatment cannot be economically applied if the location of a non-aqueous phase liquid (NAPL) source is unknown. Both characterization and remediation are expensive. Thus, efforts need to be prioritized and optimized taking effects of uncertainty into consideration. Traditional measures of uncertainty, such as variance and correlation coefficients, do not fully depict the significance of uncertainty. For example, a small error in a parameter to which performance is sensitive may affect the prospect for remediation success much more than a large error in a parameter that has minor influence. In this paper, we quantify uncertainty as the expected increase in the cost of achieving clean-up objectives that is associated with uncertainty in performance prediction models, i.e., the minimum expected cost attainable with the present state of uncertainty minus the expected cost achievable if uncertainty were fully or partially removed. This measure, a.k.a., the value of information (VOI), is context-specific, i.e., it is dependent on site conditions and remediation strategies as well as specific remediation objectives and unit costs. We consider clean-up objectives, cost formulations, and sensitivity of costs to uncertainty in parameters, measurements, and the model itself and seek to minimize expected cost under conditions of incomplete information. We present results from a synthetic case study of dense non-aqueous phase liquid (DNAPL) plume treatment. The results quantify the cost attributable to uncertainty, thus setting an upper limit on how much one should pay for characterization, and helping decision makers to decide whether the data should be collected or not.

Keywords

Groundwater remediation Optimization Value of information Calibration Uncertainty quantification 

References

  1. Abriola LM (2005) Contaminant source zones: remediation or perpetual stewardship? Environ Health Perspect, 113(7):A438–A439. ISSN 0091-6765. http://www.jstor.org/stable/3436174 CrossRefGoogle Scholar
  2. Ades AE, Lu G, Claxton K (2004) Expected value of sample information calculations in medical decision modeling. Med Decis Mak 24(2):207–227. ISSN 0272-989X. doi:10.1177/0272989X04263162 CrossRefGoogle Scholar
  3. Basu NB, Fure AD, Jawitz JW (2008) Predicting dense nonaqueous phase liquid dissolution using a simplified source depletion model parameterized with partitioning tracers. Water Resour Res 44(7):W07414, 2008. doi:10.1029/2007WR006008 CrossRefGoogle Scholar
  4. Ben-Zvi M, Berkowitz B, Kesler S (1988) Pre-posterior analysis as a tool for data evaluation: application to aquifer contamination. Water Resour Manag 2(1):11–20. doi:10.1007/BF00421927 CrossRefGoogle Scholar
  5. Borisova T, Shortle J, Horan RD, Abler David (2005) Value of information for water quality management. Water Resour Res 41:W06004. doi:10.1029/2004WR003576. http://www.agu.org/journals/wr/wr0506/2004WR003576/0.shtml CrossRefGoogle Scholar
  6. Bratvold RB, Bickel JE, Lohne HP (2009) Value of information in the oil and gas industry: Past, present, and future. SPE Reserv Evalu Eng 12(4):630–638. ISSN 1094-6470. doi:10.2118/110378-PA Google Scholar
  7. Cachon GP, Fisher M (2000) Supply chain inventory management and the value of shared information. Manage Sci 46(8):1032–1048. ISSN 0025-1909. doi:10.1287/mnsc.46.8.1032.12029 CrossRefGoogle Scholar
  8. Cardiff M, Liu X, Kitanidis PK, Parker J, Kim U (2010) Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model. J Contam Hydrol, 113(1–4):5–43. ISSN 0169-7722. doi:10.1016/j.jconhyd.2009.11.004 Google Scholar
  9. Christ JA, Ramsburg CA, Pennell KD, Abriola LM (2006) Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: an evaluation using multiphase numerical simulations. Water Resour Res 42(11):W11420CrossRefGoogle Scholar
  10. Dawdy DR (1979) The worth of hydrologic data. Water Resour Res 15(6):1726–1732. URL http://www.agu.org/journals/wr/v015/i006/WR015i006p01726/ CrossRefGoogle Scholar
  11. Domenico PA (1987) An analytical model for multidimensional transport of a decaying contaminant species. J Hydrol 91(1-2):49–58CrossRefGoogle Scholar
  12. Dridi L, Pollet I, Razakarisoa O, Schafer G (2009) Characterisation of a DNAPL source zone in a porous aquifer using the partitioning interwell tracer test and an inverse modelling approach. J Contam Hydrol 107(1–2):22–44CrossRefGoogle Scholar
  13. EPA (2004) Site characterization technologies for DNAPL investigations (EPA 542-r-04-017). Technical report EPA 542-R-04-017. EPA, Office of solid waste and emergency responseGoogle Scholar
  14. Falta RW, Basu N, Rao PS (2005a) Assessing impacts of partial mass depletion in DNAPL source zones: Ii. coupling source strength functions to plume evolution. J Contam Hydrol 79(1–2):45–66CrossRefGoogle Scholar
  15. Falta RW, Rao PS, Basu N (2005b) Assessing the impacts of partial mass depletion in DNAPL source zones—i. analytical modeling of source strength functions and plume response. J Contam Hydrol 78(4):259–280CrossRefGoogle Scholar
  16. Felli JC, Hazen GB (1998) Sensitivity analysis and the expected value of perfect information. Med Decis Mak 18(1):95–109. ISSN 0272-989XCrossRefGoogle Scholar
  17. Feyen L, Gorelick SM (2005) Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resour Res 41(3):W03019CrossRefGoogle Scholar
  18. Gavirneni S, Kapuscinski R, Tayur S (1999) Value of information in capacitated supply chains. Manage Sci 45(1):16–24. ISSN 0025-1909CrossRefGoogle Scholar
  19. Gill PE, Murray W, Saunders MA (2002) Snopt: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006. ISSN 1052-6234CrossRefGoogle Scholar
  20. Gordon NJ, Salmond DJ, SmithAFM (1993) Novel-approach to nonlinear non-gaussian bayesian state estimation. IEE Proc F Radar Signal Process 140(2):107–113. ISSN 0956-375XCrossRefGoogle Scholar
  21. Gorelick SM (1990) Large scale nonlinear deterministic and stochastic optimization: formulations involving simulation of subsurface contamination. Math Program 48(1):19–39. doi:10.1007/BF01582250 CrossRefGoogle Scholar
  22. Gould JP (1974) Risk, stochastic preference, and the value of information. J Econ Theory 8(1):64–84. ISSN 0022-0531. doi:10.1016/0022-0531(74)90006-4 CrossRefGoogle Scholar
  23. Griffin TW, Watson KW (2002) A comparison of field techniques for confirming dense nonaqueous phase liquids. Ground Water Monit Remediat 22(2):48–59CrossRefGoogle Scholar
  24. Hanemann WM (1989) Information and the concept of option value. J Environ Econ Manage 16(1):23–37. ISSN 0095-0696. doi:10.1016/0095-0696(89)90042-9 CrossRefGoogle Scholar
  25. Hayden N, Diebold J, Farrell C, Laible J, Stacey R (2006) Characterization and removal of DNAPL from sand and clay layered media. J Contam Hydrol 86(1-2):53–71CrossRefGoogle Scholar
  26. Howard RA (1966) Information value theory. IEEE Trans Syst Sci Cybern SSC2(1):22–26CrossRefGoogle Scholar
  27. Hsu N-S, William W-G (1989) Yeh. Optimum experimental design for parameter identification in groundwater hydrology. Water Resour Res 25(5):1025–1040. ISSN 0043-1397. doi:10.1029/WR025i005p01025 CrossRefGoogle Scholar
  28. James BR, Gorelick SM (1994) When enough is enough: The worth of monitoring data in aquifer remediation design. Water Resour Res 30(12):3499–3513. ISSN 0043-1397. doi:10.1029/94WR01972 CrossRefGoogle Scholar
  29. Kagan A, Shepp LA (1998) Why the variance? Stat Probab Lett 38(4):329–333. ISSN 0167-7152. doi:10.1016/S0167-7152(98)00041-8 CrossRefGoogle Scholar
  30. Kitanidis PK (1996) On the geostatistical approach to the inverse problem. Adv Water Resour 19(6):333–342CrossRefGoogle Scholar
  31. Klemeš V (1977) Value of information in reservoir optimization. Water Resour Res 13(5):837–850. URL http://www.agu.org/journals/wr/v013/i005/WR013i005p00837/ CrossRefGoogle Scholar
  32. Lee J, Liu X, Kitanidis PK, Kim U, Parker J, Bloom A, Lyon R (2012) Cost optimization of dnapl remediation at dover air force base site. Ground Water Monit Remediat (2012, in press)Google Scholar
  33. Liu JS (2008) Monte Carlo strategies in scientific computing. Springer. ISBN 0387763694Google Scholar
  34. Liu X, Cardiff M, Kitanidis PK (2010) Parameter estimation in nonlinear environmental problems. Stoch Environ Res Risk Assess 24(7):1003–1022. doi:10.1007/s00477-010-0395-y CrossRefGoogle Scholar
  35. Maddock T III (1973) Management model as a tool for studying the worth of data. Water Resour Res 9(2):270–280. ISSN 0043-1397. doi:10.1029/WR009i002p00270 CrossRefGoogle Scholar
  36. Mantoglou A, Kourakos G (2007) Optimal groundwater remediation under uncertainty using multi-objective optimization. Water Resour Res 21:835–847. ISSN 0920-4741. doi:10.1007/s11269-006-9109-0 Google Scholar
  37. McCarthy J (1956) Measures of the value of information. Proc Natl Acad Sci USA 42(9):654–655. ISSN 00278424. URL http://www.jstor.org/stable/89735 CrossRefGoogle Scholar
  38. Mylopoulos YA, Theodosiou N, Mylopoulos NA (1999) A stochastic optimization approach in the design of an aquifer remediation under hydrogeologic uncertainty. Water Resour Manag 13:335–351. ISSN 0920-4741. doi:10.1023/A:1008182906373 CrossRefGoogle Scholar
  39. Newman MA, Hatfield K, Hayworth J, Rao PSC, Stauffer T (2006) Inverse characterization of napl source zones. Environ Sci Technol 40(19):6044–6050CrossRefGoogle Scholar
  40. Park E, Parker JC (2005) Evaluation of an upscaled model for DNAPL dissolution kinetics in heterogeneous aquifers. Adv Water Resour 28(12):1280–1291CrossRefGoogle Scholar
  41. Parker J, Kim U, Kitanidis PK, Cardiff M, Liu X (2010) Stochastic cost optimization of multistrategy DNAPL site remediation. Ground Water Monit Remediat 30(3):65–78. doi:10.1111/j.1745-6592.2010.01287.x CrossRefGoogle Scholar
  42. Parker JC, Park E, Tang G (2008) Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization—analytical solution, model calibration and prediction uncertainty. J Contam Hydrol 102(1-2):61–71. ISSN 0169-7722. doi:10.1016/j.jconhyd.2008.03.009 CrossRefGoogle Scholar
  43. Powell K, Silfer B (2005) In-situ techniques for napl characterization. Environ Claims J 17(2):223–230. ISSN 1040-6026. URL http://www.informaworld.com/10.1080/10406020500240202.CrossRefGoogle Scholar
  44. Rao PSC, Annable MD, Kim H (2000) Napl source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques. J Contam Hydrol 45(1–2):63–78 (IAH groundwater quality 1998 conference (GQ98) 1998 Tubingen, Germany)CrossRefGoogle Scholar
  45. Reichard EG, Evans JS (1989) Assessing the value of hydrogeologic information for Risk-Based remedial action decisions. Water Resour Res 25(7):1451–1460. http://www.agu.org/journals/wr/v025/i007/WR025i007p01451/ CrossRefGoogle Scholar
  46. Rubin DB (1987) The calculation of posterior distributions by data augmentation: Comment: A noniterative Sampling/Importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. J Am Stat Assoc 82(398):543–546. ISSN 01621459. http://www.jstor.org/stable/2289460 CrossRefGoogle Scholar
  47. Slack JR, Wallis JR, Matalas NC (1975) On the value of information to flood frequency analysis. Water Resour Res 11(5):629–647. http://www.agu.org/journals/wr/v011/i005/WR011i005p00629/ CrossRefGoogle Scholar
  48. Steinberg DM, Hunter WG (1984) Experimental design: review and comment. Technometrics 26(2):71–97. ISSN 00401706. http://www.jstor.org/stable/1268097 CrossRefGoogle Scholar
  49. Stephens DW (1989) Variance and the value of information. Am Nat 134(1):128–140. ISSN 0003-0147CrossRefGoogle Scholar
  50. Wagner BJ (1995) Sampling design methods for groundwater modeling under uncertainty. Water Resour Res 31(10):2581–2591. ISSN 0043-1397. doi:10.1029/95WR02107 CrossRefGoogle Scholar
  51. Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty—stochastic-programming approaches and the value of information. Water Resour Res 28(5):1233–1246. ISSN 0043-1397CrossRefGoogle Scholar
  52. Walter AI, Steven JB, Liu X, Massi A (2010) Hydraulic/partitioning tracer tomography for dnapl source zone characterization: small-scale sandbox experiments. Environ Sci Technol 44(22):8609–8614. ISSN 0013-936X. doi:10.1021/es101654j CrossRefGoogle Scholar
  53. Yeh TCJ, Zhu JF (2007) Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones. Water Resour Res 43(6):W06435CrossRefGoogle Scholar
  54. Yokota F, Thompson KM (2004) Value of information analysis in environmental health risk management decisions: Past, present, and future. Risk Anal 24(3):635–650. ISSN 1539-6924. doi:10.1111/j.0272-4332.2004.00464.x CrossRefGoogle Scholar
  55. Zelt CA, Azaria A, Levander A (2006) 3d seismic refraction traveltime tomography at a groundwater contamination site. Geophysics 71(5):H67–H78CrossRefGoogle Scholar
  56. Zhu JF, Cai X, Yeh TCJ (2009) Analysis of tracer tomography using temporal moments of tracer breakthrough curves. Adv Water Resour 32(3):391–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Xiaoyi Liu
    • 1
    • 2
  • Jonghyun Lee
    • 1
  • Peter K. Kitanidis
    • 1
  • Jack Parker
    • 3
  • Ungtae Kim
    • 3
  1. 1.Department of Civil and Environmental EngineeringStanford UniversityStanfordUSA
  2. 2.Lawrence Berkeley National Laboratory, Earth Science DivisionBerkeleyUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations