Water Resources Management

, Volume 26, Issue 5, pp 1231–1252 | Cite as

Variations in Discharge Volumes for Hydropower Generation in Switzerland

  • Pascal HänggiEmail author
  • Rolf Weingartner


This study analyses the way climatic variations over the last century impacted the volumes of water available for hydropower production in Switzerland. The analysis relied on virtual intakes located all over Switzerland, which were assumed to be fed by water from mesoscale catchments. Intake capacities were designed using flow duration curves. The results show that the overall warming and increased winter precipitation observed in recent decades have led to more balanced discharge behaviours in rivers and more favourable conditions for electricity production than most periods in the past. In lower-altitude regions of Switzerland, the annual volume of water available for electricity production has not changed significantly; however, significantly more water is available in winters, while less is available during summers. In higher-altitude regions like the Swiss Alps, especially in glaciated catchment areas, significantly more water is available in both seasons; in other words, the annual volume of water available for hydropower production is significantly higher in these areas when compared to earlier periods. Comparison of these results with the actual amount of hydroelectricity produced over the same period reveals that hydrological variations cannot fully explain the variations in power production observed. Plant-specific analyses are needed of the impact of climatic changes on water management.


Alps Climate change Design discharge Hydroelectric power Flow duration curve Switzerland 



This study is part of the Swiss Mountain Water Network initiated project “Climate change and hydropower generation in Switzerland”. The project is funded by Swisselectric Research and the Swiss Federal Office of Energy (SFOE). Runoff data were provided by the Swiss Federal Office for the Environment (FOEN), Grande-Dixence S.A., and the cantons of Appenzell Ausserrhoden, Fribourg, St. Gallen, and Zurich.


  1. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675CrossRefGoogle Scholar
  2. Alexandersson H (1995) Homogeneity testing, multiple breaks and trends. In: Steering Committee for International Meetings on Statistical Climatology, 6th International Meeting on Statistical Climatology. Galway, pp 439–442Google Scholar
  3. Alfieri L, Perona P, Burlando P (2006) Optimal water allocation for an Alpine hydropower system under changing scenarios. Water Resour Manag 20(5):761–778. doi: 10.1007/s11269-005-9006-y CrossRefGoogle Scholar
  4. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25(1):65–80. doi: 10.1002/joc.1118 CrossRefGoogle Scholar
  5. Belz JU et al (2007) Das Abflussregime des Rheins und seiner Nebenflüsse im 20. Jahrhundert: Analyse, Veränderungen, Trends. LelystadGoogle Scholar
  6. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: Links to changes in large-scale climatic forcings. Climatic Change 36(3–4):281–300CrossRefGoogle Scholar
  7. BFKF (1995) Wahl, Dimensionierung und Abnahme einer Kleinturbine. Bundesamt für Konjunkturfragen BFKF, BernGoogle Scholar
  8. Birsan M-V, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol 314(1–4):312–329. doi: 10.1016/j.jhydrol.2005.06.008 CrossRefGoogle Scholar
  9. Collins DN (2008) Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum. Ann Glaciol 48(1):119–124CrossRefGoogle Scholar
  10. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New YorkGoogle Scholar
  11. Hänggi P, Weingartner R (2011) Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808-2007. Hydrolog Sci J 56(1):34–50. doi: 10.1080/02626667.2010.536549 CrossRefGoogle Scholar
  12. Hänggi P et al (2011a) Einfluss der Klimaänderung auf die Stromproduktion der Wasserkraftwerke im Prättigau 2021–2050. Fachbericht zur Synthese des Projektes Klimaänderung und Wasserkraftnutzung. BernGoogle Scholar
  13. Hänggi P et al (2011b). Einfluss der Klimaänderung auf die Stromproduktion des Wasserkraftwerks Löntsch 2021–2050. Fachbericht zur Synthese des Projektes Klimaänderung und Wasserkraftnutzung. BernGoogle Scholar
  14. Hubacher R, Schädler B (2010) Water balance of the main river basins during the 20th century. In: Landeshydrologie und -geologie (LHG) Hydrological Atlas of Switzerland. Plate 6.6. Bundesamt für Landestopographie, BernGoogle Scholar
  15. Huss M, Bauder A, Funk M, Hock R (2008a) Determination of the seasonal mass balance of four Alpine glaciers since 1865J Geophys Res - Earth Surface 113(F1). doi: 10.1029/2007JF000803
  16. Huss M, Farinotti D, Bauder A, Funk M (2008b) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22(19):3888–3902. doi: 10.1002/hyp.7055 CrossRefGoogle Scholar
  17. Khaliq MN, Ouarda TBMJ (2007) On the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27(5):681–687. doi: 10.1002/joc.1438 CrossRefGoogle Scholar
  18. Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records - a review of the methodology. Hydrolog Sci J 49(1):7–19CrossRefGoogle Scholar
  19. Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931-99). Int J Climatol 23(7):733–750. doi: 10.1002/joc.912 CrossRefGoogle Scholar
  20. Pellicciotti F, Bauder A, Parola M (2010) Effect of glaciers on streamflow trends in the Swiss Alps. Water Resour Res 46(10):W10522CrossRefGoogle Scholar
  21. Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Bd. 212. Berichte des Deutschen Wetterdienstes. Deutscher Wetterdienst, Offenbach am MainGoogle Scholar
  22. Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: The role of local- and large-scale climate variability. Geophys Res Lett 31(13). doi: 10.1029/2004GL020255
  23. Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century“. Int J Climatol 25(6):753–771. doi: 10.1002/joc.1179 CrossRefGoogle Scholar
  24. Schmidli J, Schmutz C, Frei C, Wanner H, Schär C (2002) Mesoscale precipitation variability in the region of the European Alps during the 20th century. Int J Climatol 22(9):1049–1074CrossRefGoogle Scholar
  25. SFOE (2010) Swiss electricity statistics 2009/Schweizerische Elektrizitätsstatistik 2009. Swiss Federal Office of Energy SFOE, BernGoogle Scholar
  26. Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sc 8(6):1016–1029CrossRefGoogle Scholar
  27. Weingartner R, Aschwanden H (1992) Discharge Regime - the Basis for the Estimation of Average Flows. In: Landeshydrologie und -geologie (LHG) Hydrological Atlas of Switzerland. Plate 5.2. Bundesamt für Landestopographie, BernGoogle Scholar
  28. Weingartner R, Pfister C (2007) To what extent was the hydrological winter drought 2005/06 exceptional? - a hydrological-historical review of streamflow in the river Rhine at Basel. Hydrologie und Wasserbewirtschaftung 51(1):22–26Google Scholar
  29. Zappa M, Kan C (2007) Extreme heat and runoff extremes in the Swiss Alps. Nat Hazards Earth Syst Sci 7(3):375–389CrossRefGoogle Scholar
  30. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13). doi: 10.1029/2006GL026319

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Geography and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland

Personalised recommendations