Advertisement

Water Resources Management

, 25:3537 | Cite as

Regional Frequency Analysis of Droughts in Portugal

  • João Filipe SantosEmail author
  • Maria Manuela Portela
  • Inmaculada Pulido-Calvo
Article

Abstract

This study investigated the frequency of droughts for the period September 1910 to October 2004 in mainland Portugal, based on monthly precipitation data from 144 rain gauges distributed across the country. The drought events were characterized using the standardized precipitation index (SPI) applied to time scales of 1, 3, 6 and 12 consecutive months. Based on the SPI time scale series a regional frequency analysis of drought magnitudes was undertaken using two approaches: annual maximum series (AMS) and partial duration series (PDS). Three spatially defined regions (north, central and south) were identified by cluster analysis and analyzed for homogeneity. Maps of drought magnitude were developed using a kriging technique for several return periods. Similar uniform spatial patterns were found throughout the country using the AMS and PDS approaches. For several SPI time scales a comparison of the observed and estimated maximum magnitude (269-year empirical return period) showed that the AMS combined with the selected probability distribution models (Pearson type III, general Pareto and Kappa) provided better results than the PDS approach combined with the same models. A general and simplified characterization of drought duration revealed a relatively uniform pattern of droughts events across the country.

Keywords

Standardized precipitation index (SPI) Annual maximum series Partial duration series Regional frequency analysis 

References

  1. Agnew CT (2000) Using the SPI to identify drought. Drought Netw News 12:6–12Google Scholar
  2. Akhtari R, Morid S, Mahdian MH, Smakhtin V (2009) Assessment of areal interpolation methods for spatial analysis of SPI and EDI drought indices. Int J Climatol 29:135–145CrossRefGoogle Scholar
  3. Ascaso A, Casals M (1981) Periodos secos y sequías en la depresión central del Ebro. Geographicalia 11–12:55–70Google Scholar
  4. Ashkar F, Rousselle J (1987) Partial duration series modeling under the assumption of a Poissonian flood count. J Hydrol 90(1–2):135–144CrossRefGoogle Scholar
  5. Beguería S (2005) Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. J Hydrol 303(1–4):215–230CrossRefGoogle Scholar
  6. Benjamin JR, Cornell CA (1970) Probability, statistics, and decision for civil engineers. McGraw-Hill, NewYorkGoogle Scholar
  7. Bonaccorso B, Cancelliere A, Rossi G (2003) An analytical formulation of return period of drought severity. Stoch Environ Res Risk Assess 17:157–174CrossRefGoogle Scholar
  8. Byun H-R, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12(2):747–756Google Scholar
  9. Cancelliere A, Salas JD (2004) Drought length properties for periodic-stochastic hydrologic data. Water Resour Res 40:W02503. doi: 10.1029/2002WR001750 CrossRefGoogle Scholar
  10. Chen YD, Huang G, Shao Q, Xu C (2006) Regional analysis of low flow using L-moments for Dongjiang basin, South China. Hydrological Sci-J-des Sci Hydrologiques 51(6):1051–1064CrossRefGoogle Scholar
  11. Corte-Real J, Qian B, Xu H (1998) Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation. Int J Climatol 18(6):619–635CrossRefGoogle Scholar
  12. Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(3–4):257–271CrossRefGoogle Scholar
  13. Cunnane C (1979) A note on the Poisson assumption in partial duration series models. Water Resour Res 15(2):489–494CrossRefGoogle Scholar
  14. Dalrymple T (1960) Flood frequency analysis. U.S. Geological Survey Water Supply Paper 1543-A., Reston, VaGoogle Scholar
  15. Davis E, Naghettini M (2001), Estudo de chuvas intensas no estado do Rio de Janeiro. Belo Horizonte, CPRM, 140 pGoogle Scholar
  16. Dracup JA, Lee KS, Paulson EG (1980) On the definition of droughts. Water Resour Res 16(2):297–302CrossRefGoogle Scholar
  17. Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales, Climatology Rep. 97–2, Department of Atmospheric Science, Colorado State University, Fort Collins, ColoradoGoogle Scholar
  18. Edwards DC (2001) Methodology of SPI. http://ccc.atmos.colostate.edu/SPI.htm
  19. Engeland K, Hisdal H, Frigessi A (2004) Practical extreme value modelling of hydrological floods and droughts. A case study. Springer Science Extremes 7:5–30CrossRefGoogle Scholar
  20. Estrela MJ, Peñarrocha D, Millán M (2000) Multi-annual drought episodes in the mediterranean (Valencia region) from 1950–1996. A spatio-temporal analysis. Int J Climatol 20:1599–1618CrossRefGoogle Scholar
  21. González-Hidalgo JC, de Luís M, Raventós J, Sánchez JR (2003) Daily rainfall trend in the Valencia region of Spain. Theor Appl Climatol 75:117–130Google Scholar
  22. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of the Iberian rainfall. Int J Climatol 22:1593–1615CrossRefGoogle Scholar
  23. Gupta VK, Duckstein L (1975) A stochastic analysis of extreme droughts. Water Resour Res 11(2):221–228CrossRefGoogle Scholar
  24. Guttman NB (1998) Comparing the Palmer Drought Index and the standardized precipitation index. J Am Water Resour Assoc (JAWRA) 34:113–121CrossRefGoogle Scholar
  25. Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc (JAWRA) 35(2):311–322CrossRefGoogle Scholar
  26. Haan CT (ed) (1977) Statistical Methods in Hydrology, 378 pp., The Iowa State University Press, Iowa, USAGoogle Scholar
  27. Hayes M, Wilhite DA, Svoboda M, Vanyarkho O (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438CrossRefGoogle Scholar
  28. Heim RR Jr (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1165Google Scholar
  29. Hisdal H, Tallaksen LM, Clausen B, Peters E, Gustard A (2004) Hydrological drought characteristics. In: Tallaksen LM, Van Lanen HAJ (eds) Hydrological drought–processes and estimation methods for streamflow and groundwater. Developments in Water Sciences 48, Elsevier B.V., 139–198Google Scholar
  30. Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc, Series B 52:105–124Google Scholar
  31. Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(1):271–281CrossRefGoogle Scholar
  32. Hosking JRM, Wallis JR (1995) Correction to “some statistics useful in regional frequency analysis”. Water Resour Res 31(1):251CrossRefGoogle Scholar
  33. Hosking JRM, Wallis JR (1997) Regional frequency analysis—An approach based on L-moments. Cambridge University Press, Cambridge, p 224CrossRefGoogle Scholar
  34. Isaaks EH, Srivastava RM (1989) An Introduction to applied geostatistics. Oxford University Press, New York, p 561Google Scholar
  35. Komuscu AU (1999) Using the SPI to analyze spatial and temporal patterns of drought in Turkey. Drought Network News 11:7–13Google Scholar
  36. Lana X, Burgueño A (1998) Spatial and temporal characterisation of annual extreme droughts in Catalonia (NE Spain). Int J Climatol 18:93–110CrossRefGoogle Scholar
  37. Lloyd EH (1970) Return period in the presence of persistence. J Hydrol 10(3):202–215Google Scholar
  38. Lloyd-Hughes B, Saunders MA (2002) European drought climatology and prediction using the Standardised Precipitation Index (SPI). 8.11 IN 13th Conference on Applied MeteorologyGoogle Scholar
  39. Loaiciga HA, Mariño MA (1991) Recurrence interval of geophysical events. J Water Resour Plan Manage 117(3):367–382CrossRefGoogle Scholar
  40. Madsen H, Pearson CP, Rosbjerg D (1997a) Comparison of annual maximum series and partial duration methods for modeling extreme hydrologic events 2, Regional modelling. Water Resour Res 33(4):759–769CrossRefGoogle Scholar
  41. Madsen H, Rasmussen PF, Rosbjerg D (1997b) Comparison of annual maximum series and partial duration methods for modeling extreme hydrologic events 1, At-site modelling. Water Resour Res 33(4):747–757CrossRefGoogle Scholar
  42. Martins ES, Stedinger JR (2001) Historical information in a GMLE-GEV framework with partial duration and annual maximum series. Water Resour Res 37(10):2551–2557CrossRefGoogle Scholar
  43. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. in Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, pp 179–184Google Scholar
  44. Naghettini M, Pinto EJA (2007) Hidrologia Estatística, 484 pp., Belo Horizonte, CPRM -Serviço Geológico do Brasil, BrasilGoogle Scholar
  45. Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manage 23:881–897CrossRefGoogle Scholar
  46. Norbiato D, Borga M, Sangati M, Zanon F (2007) Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flashflood. J Hydrol 345:149–166CrossRefGoogle Scholar
  47. Palmer WC (1965) Meteorological drought. Weather Bureau, WashingtonGoogle Scholar
  48. Pandey RP, Mishra SK, Singh R, Ramasastri KS (2008) Streamflow drought severity analysis of Betwa river system (INDIA). Water Resour Manage 22(8):1127–1141CrossRefGoogle Scholar
  49. Pearson CP (1993) Application of L-moments to maximum river Hows. N Z Statistician 28(1):2–10Google Scholar
  50. Peel MC, Wang QJ, Vogel RM, Mcmahon TA (2001) The utility of L-moment ratio diagrams for selecting a regional probability distribution. Hydrological Sci-J-des Sciences Hydrologiques 46(1):147–155CrossRefGoogle Scholar
  51. Portela MM, Quintela AC (2006) Estimação em Portugal Continental de escoamento e de capacidades uteis de albufeiras de regularização na ausência de informação. Recursos Hidrícos 27(2):7–18Google Scholar
  52. Ribeiro O (1998) Portugal, o Mediterrâneo e o Atlântico. Livraria Sá da Costa Editora (7ª ed.), Lisboa, PortugalGoogle Scholar
  53. Rodriguez-Puebla C, Encinas AH, Nieto S, Garmenia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18:299–316CrossRefGoogle Scholar
  54. Rosbjerg D, Madsen H (2004) Advanced approaches in PDS/POT modelling of extreme hydrological events, Hydrology Science and Practice for the 21st century, vol. I. British Hydrological Society.Google Scholar
  55. Rosbjerg D, Madsen H, Rasmussen PF (1992) Prediction in partial duration series with generalized Pareto-distributed exceedances. Water Resour Res 28(11):3001–3010CrossRefGoogle Scholar
  56. Rossi G, Benedini M, Tsakins G, Giakoumakis S (1992) On regional drought estimation and analysis. Water Resour Manage 6:249–277CrossRefGoogle Scholar
  57. Santos FD, Forbes K, Moita R (2002) Climate change in Portugal: scenarios, impacts and adaptation measures. Projecto SIAM, Gradiva, Lisboa, PortugalGoogle Scholar
  58. Santos JF, Pulido-Calvo I, Portela MM (2010) Spatial and temporal variability of droughts in Portugal. Water Resour Res 46:W03503. doi: 10.1029/2009WR008071 CrossRefGoogle Scholar
  59. Schaefer MG (1990) Regional analyses of precipitation annual maxima in Washington State. Water Resour Res 26(1):119–131Google Scholar
  60. Shane R, Lynn WR (1964) Mathematical model for flood risk analysis. J Hydraul 90:1–20Google Scholar
  61. Shiau J, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage 127(1):30–40CrossRefGoogle Scholar
  62. Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 18–41Google Scholar
  63. Tallaksen LM (2000) Streamflow drought frequency analysis. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic Publishers, Dordrecht, pp 103–117Google Scholar
  64. Tallaksen LM, Van Lanen HAJ (2004) Hydrological drought – processes and estimation methods for streamflow and groundwater. Developments in Water Sciences 48, Elsevier Science BV, The NetherlandsGoogle Scholar
  65. Tallaksen LM, Madsen H, Clausen B (1997) On the definition and modelling of streamflow drought duration and deficit volume. Hydrological Sci-J-des Sciences Hydrologiques 42(1):15–33CrossRefGoogle Scholar
  66. Tate EL, Gustard A (2000) Drought definition: ahydrological perspective. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic Publishers, Dordrecht, pp 23–48Google Scholar
  67. Todorovic P, Zelenhasic E (1970) A stochastic model for flood analysis. Water Resour Res 6(6):1641–1648CrossRefGoogle Scholar
  68. Trigo RM, Camara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581CrossRefGoogle Scholar
  69. Trigo RM, Pozo-Vazquez D, Osborn TJ, Castro-Diez Y, Gamiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic Oscillation Influence on Precipitation, riverflow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944CrossRefGoogle Scholar
  70. Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on Reconnaissance Drought Index (RDI). Water Resour Manage 21(5):821–833CrossRefGoogle Scholar
  71. Ulbrich U, Cristoph M, Pinto JG, Corte-Real J (1999) Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity. Int J Climatol 19:379–390CrossRefGoogle Scholar
  72. Vicente-Serrano SM (2006a) Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour Manage 20:37–60CrossRefGoogle Scholar
  73. Vicente-Serrano SM (2006b) Spatial and temporal analysis of droughts in the Iberian Peninsula. Hydrological Sci-J-des Sciences Hydrologiques 51(1):83–97. doi: 10.1623/hysj.51.1.83 CrossRefGoogle Scholar
  74. Vicente-Serrano SM, Begueria SP (2003) Estimating extreme dry-spell risk in the middle Ebro valley (Northeastern Spain): A comparative analysis of partial duration series with a General Pareto distribution and annual maxima series with a Gumbel distribution. Int J Climatol 23:1103–1118CrossRefGoogle Scholar
  75. Vicente-Serrano SM, González-Hidalgo JC, de Luis M, Raventós J (2004) Drought patterns in the Mediterranean area: the Valencia región (eastern Spain). Clim Res 26:5–15CrossRefGoogle Scholar
  76. Viglione A, Laio F, Claps P (2007) A comparison of homogeneity tests for regional frequency analysis. Water Resour Res 43:W03428. doi: 10.1029/2006WR005095 CrossRefGoogle Scholar
  77. Vogel RM, Fennessey NM (1993) L Moments diagrams should replace product moment diagrams. Water Resour Res 29(6):1745–1752CrossRefGoogle Scholar
  78. Vogel RM, Wilson I (1996) Probability distribution of annual maximum, mean, and minimum streamflows in the United States. J Hydrol Eng 1(2):69–76CrossRefGoogle Scholar
  79. Vogel RM Jr, Thomas WO, McMahon TA (1993a) Flood-flow frequency model in Southwestern United States. J Water Resour Plan Manage 193(3):353–366CrossRefGoogle Scholar
  80. Vogel RM, McMahon TA, Chiew FHS (1993b) Floodflow frequency model selection in Australia. J Hydrol 146:421–449CrossRefGoogle Scholar
  81. Wallis JR, Schaefer MG, Barker BL, Taylor GH (2007) Regional precipitation-frequency analysis and spatial mapping for 24-hour and 2-hour durations for Washington State. Hydrol Earth Syst Sci 11(1):415–442CrossRefGoogle Scholar
  82. Werick WJ, Willeke GE, Guttman NB, Hosking JRM, Wallis JR (1994) National Drought Atlas Developed. In: Presnall D (ed) Geophysics news 1993. American Geophysical Union, Washington, D.C., pp 8–10Google Scholar
  83. Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Intl 10:111–120CrossRefGoogle Scholar
  84. Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313CrossRefGoogle Scholar
  85. Yamoah CF, Walters DF, Shapiro CA, Francis CA, Hayes MJ (2000) Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize. Agric Ecosyst Environ 80:113–120. doi: 10.1016/S0167-8809(00)00140-7 CrossRefGoogle Scholar
  86. Zorita E, Kharin V, von Storch H (1992) The atmospheric circulation and seasurface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5:1097–1108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • João Filipe Santos
    • 1
    Email author
  • Maria Manuela Portela
    • 2
  • Inmaculada Pulido-Calvo
    • 3
  1. 1.Dpto. Engenharia, ESTIGInstituto Politécnico de BejaBejaPortugal
  2. 2.Dpto. Engenharia Civil, SHRHInstituto Superior Técnico (Lisboa)LisboaPortugal
  3. 3.Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería, Campus La RábidaUniversidad de HuelvaPalos de la FronteraSpain

Personalised recommendations