Water Resources Management

, 25:3301 | Cite as

Rasterised Water Demands: Methodology for Their Assessment and Possible Applications

  • Davy Vanham
  • Stefanie Millinger
  • Harald Pliessnig
  • Wolfgang Rauch


In this paper a methodology for the calculation of grid cell spatially distributed water demands—for the stakeholders domestic, municipal, industrial and agricultural (without rainfed or irrigated crop production) water use—is presented. As case study the Kitzbühel region in the Austrian Alps, encompassing 20 municipalities, was chosen. Austria is one of few countries within the European Union that provides data of the population and housing census of 2001 in a raster format, with resolutions 125, 250, 500, 1,000 and 2,500 m. From these available data, population and employment raster data were used for the analysis. Based upon the latter and a calibrated related rate of water use (litre per unit per time interval), rasterised yearly and winter water demands were calculated. These rasters represent the alpine character of the study area and are independent of political borders. They can be used in hydraulics related studies, a wide range of water resources management studies and for landscape and urban planning studies. The limiting factor and scale for all applicable studies is the resolution and availability of accurate population and water use data. This fine-resolution water demand dataset can only be generated with the high resolution census data and (reasonably) accurate water use data via survey and expert input. Therefore the scale of studies where the proposed methodology is applicable is limited to a local and regional scale, up to national borders where the detailed population and housing census of 2001 is available as raster data.


Raster Grid Spatially distributed Population census Water demand Europe 


  1. Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–338CrossRefGoogle Scholar
  2. Alcamo J, Flörke M, Marker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic change. Hydrol Sci J 52:247–275CrossRefGoogle Scholar
  3. Barthel R, Janisch S, Nickel D, Trifkovic A, Hörhan T (2010) Using the multiactor-approach in glowa-danube to simulate decisions for the water supply sector under conditions of global climate change. Water Resour Manag 24(2):239–275CrossRefGoogle Scholar
  4. BMLFUW (2006) Definitions of agriculture and forestry, environment and water management, Bundesminsterium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Abteilung II 5. BMLFUW, Wien, p 73Google Scholar
  5. Briggs DJ, Gulliver J, Fecht D, Vienneau DM (2007) Dasymetric modelling of small-area population distribution using land cover and light emissions data. Remote Sens Environ 108(4):451–466CrossRefGoogle Scholar
  6. CIESIN (2005) Gridded population of the world version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University, Palisades, NYGoogle Scholar
  7. Craswell E, Bonnell M, Bossio D, Demuth S, Giesen N, Islam MS, Oki T, Kanae S, Hanasaki N, Agata Y, Yoshimura K (2007) A grid-based assessment of global water scarcity including virtual water trading: integrated assessment of water resources and global change. Springer, Dordrecht, pp 19–33Google Scholar
  8. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134CrossRefGoogle Scholar
  9. Durga Rao KHV (2005) Multi-criteria spatial decision analysis for forecasting urban water requirements: a case study of Dehradun City, India. Landscape Urban Plan 71:163–174CrossRefGoogle Scholar
  10. DVGW (1995) Arbeitsblatt W 410—Wasserbedarfszahlen, Deutsche Vereinigung des Gas—und WasserfachesGoogle Scholar
  11. Falkenmark M, Lannerstad M (2007) Consumptive water use to feed humanity—curing a blind spot. Hydrol Earth Syst Sci 9:15–28CrossRefGoogle Scholar
  12. FAO (2003) Compendium of agricultural—environmental indicators. Statistics Analysis Service, Statistics Division, Food and Agriculture Organization of the United Nations, Rome, p 35Google Scholar
  13. Hoch W (2007) Bedarfsgerechte Planung—Anpassung der Planungsgrößen auf den Wasserbedarf. GWF-Wasser/Abwasser 148(13):22–28Google Scholar
  14. Kaminger I, Meyer W (2007) Neue Raster-orientierte Statistik in Europa. In: 19. Angewandte geoinformatik (AGIT)-symposium. Strobl, Blaschke, Griesebner, Salzburg, pp 303–308Google Scholar
  15. Laghari AN, Vanham D, Rauch W (2011) The Indus Basin in the framework of current and future water resources management. Hydrol Earth Syst Sci Discuss 8:1–26CrossRefGoogle Scholar
  16. Meigh JR, McKenzie AA, Sene KJ (1999) A grid-based approach to water scarcity estimates for Eastern and Southern Africa. Water Resour Manag 13:85–115CrossRefGoogle Scholar
  17. Möderl M, De Toffol S, Vanham D, Fleischhacker E, Rauch W (2008a) Abschätzung des Risikos von Naturgefahren für Wasserversorgungssysteme auf Basis der Systemvulnerabilität. Österreichische Wasser- und Abfallwirtschaft 9–10:149–155. doi:10.1007/s00506-008-0018-8 CrossRefGoogle Scholar
  18. Möderl M, Vanham D, De Toffol S, Rauch W (2008b) Potential impact of natural hazards on water supply systems in Alpine regions. Water Pract Technol 3(3). doi:10.2166/wpt.2008.060
  19. Mutschmann J, Stimmelmayr F (2007) Taschenbuch der Wasserversorgung. Vieweg, Braunschweig, p 926Google Scholar
  20. Omer RM, Hester AJ, Gordon IJ, Swaine MD, Raffique SM (2006) Seasonal changes in pasture biomass, production and offtake under the transhumance system in northern Pakistan. J Arid Environ 67(4):641–660CrossRefGoogle Scholar
  21. Perveen S, James L (2010) Multiscale effects on spatial variability metrics in global water resources data. Water Resour Manag 24(9):1903–1924CrossRefGoogle Scholar
  22. Rai S (2011) Water management for a megacity: national capital territory of Delhi. Water Resour Manag. doi:10.1007/s11269-011-9807-0 Google Scholar
  23. Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:W00A12CrossRefGoogle Scholar
  24. Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384:198–217CrossRefGoogle Scholar
  25. Statistics Austria (2008) www.statistik.at
  26. Szibalski M (2007) Grid data in official statistics of Europe—a survey about the storage, analysis and publication of census data and business statistics (in German). Wirtschaft und Statistik 2:137–143Google Scholar
  27. Trifunović N (2006) Introduction to urban water distribution. In: UNESCO-IHE lecture note series. Taylor & Francis, London, p 509CrossRefGoogle Scholar
  28. Vanham D (2010) Feeding the world: the importance of green water in water resources management. In: Proceedings of the 5th IWA YWPC, Sydney, 5–7 July 2010Google Scholar
  29. Vanham D, Rauch W (2009) Retreating snowpacks under climate change: implications for water resources management in the Austrian Alps. In: Improving integrated surface and groundwater resources management in a vulnerable and changing world, IAHS Publication 330, pp 231–238Google Scholar
  30. Vanham D, Fleischhacker E, Rauch W (2008) Technical note: seasonality in alpine water resources management—a regional assessment. Hydrol Earth Syst Sci 12(1):91–100CrossRefGoogle Scholar
  31. Vanham D, Fleischhacker E, Rauch W (2009a) Impact of an extreme dry and hot summer on water supply security in an alpine region. Water Sci Technol 59(3):469–477CrossRefGoogle Scholar
  32. Vanham D, Fleischhacker E, Rauch W (2009b) Impact of snowmaking on alpine water resources management under present and climate change conditions. Water Sci Technol 59(9):1793–1801CrossRefGoogle Scholar
  33. Vanham D, Weingartner R, Rauch W (2011) The Cauvery river basin in Southern India: Major challenges and possible solutions in the 21st century. Water Sci Technol. doi:10.2166/wst.2011.554 Google Scholar
  34. Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561CrossRefGoogle Scholar
  35. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRefGoogle Scholar
  36. Wichelns D (2010) Virtual water: a helpful perspective, but not a sufficient policy criterion. Water Resour Manag 24(10):2203–2219CrossRefGoogle Scholar
  37. Wonka E (2006) Regionalstatistik in Österreich—Von der Tabelle zu räumlicher Analyse und Visualisierung. In: Strobl J (ed) Salzburger geografische Arbeiten. Fachbereich Geographie und Geologie der Universität Salzburg, Salzburg, p 168Google Scholar
  38. Zhou SL, McMahon TA, Walton A, Lewis J (2002) Forecasting operational demand for an urban water supply zone. J Hydrol 259(1–4):189–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Davy Vanham
    • 1
  • Stefanie Millinger
    • 1
  • Harald Pliessnig
    • 2
  • Wolfgang Rauch
    • 1
  1. 1.Institute of InfrastructureUniversity of InnsbruckInnsbruckAustria
  2. 2.Wasser Tirol—Wasserdienstleistungs-GmbHInnsbruckAustria

Personalised recommendations