Water Resources Management

, Volume 25, Issue 3, pp 1021–1036 | Cite as

Erosion Risk Mapping Applied to Environmental Zoning

  • Paulo Tarso Sanches de Oliveira
  • Teodorico Alves Sobrinho
  • Dulce Buchala Bicca Rodrigues
  • Elói Panachuki


Water erosion caused by inappropriate land use compromises the ecosystems and causes economic and social losses. To remedy this, the present study proposes (i) the evaluation of the erosion risk in an Environmental Protection Area (EPA) with the combination of Universal Soil Loss Equation (USLE), soil loss tolerance (T) estimates adapted to Brazilian soils and the legislation; and (ii) control measures from environmental zoning. This was applied to the EPA of Lageado stream, one of the main surface water sources in Campo Grande, Brazil. Several referenced information plans were overlapped and the total area was divided into five zones with different land use profiles, which were determined according to the conservation and preservation of native vegetation, occurrence of wet areas and springs, land use and management, eroded area recovery and occurrence of permanently preserved areas. The methodology proposed was suitable for environmental zoning of protected areas. This protocol can be applied to other areas by including additional variables such as social and economic parameters.


Water erosion Soil loss tolerance Water and soil management Geographical information system Remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amore E, Modica C, Nearing MA, Santoro VC (2004) Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. J Hydrol 293:100–114. doi: 10.1016/j.jhydrol.2004.01.018 CrossRefGoogle Scholar
  2. Asis AM, Omasa K (2007) Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of Landsat ETM data. ISPRS J Photogramm Remote Sens 62:309–324. doi: 10.1016/j.isprsjprs.2007.05.013 CrossRefGoogle Scholar
  3. Basic F, Kisic I, Mesic M, Nestroy O, Butorac A (2004) Tillage and crop management effects on soil erosion in central Croatia. Soil Tillage Res 78:197–206. doi: 10.1016/j.still.2004.02.007 CrossRefGoogle Scholar
  4. Bertol I, Almeida JA (2000) Soil loss tolerance by erosion for Santa Catarina state soils. R Bras Ci Solo 24:657–668Google Scholar
  5. Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79:49–59. doi: 10.1016/j.catena.2009.05.010 CrossRefGoogle Scholar
  6. Bhattacharyya P, Bhatt VK, Mandal D (2008) Soil loss tolerance limits for planning of soil conservation measures in Shivalik–Himalayan region of India. Catena 73:117–124. doi: 10.1016/j.catena.2007.10.001 Google Scholar
  7. Brazil Ministry of Mines and Energy (1982) RadamBrasil, Campo Grande Sheet SF.21, geology, geomorphology, pedology, vegetation and land use potential. In: Rio de Janeiro: survey of natural resources, vol 28, 412 ppGoogle Scholar
  8. Câmara G, Souza RCM, Freitas UM, Garrido J (1996) SPRING: integrating remote sensing and GIS by object-oriented data modeling. Comput Graph 20:395–403. doi: 10.1016/0097-8493(96)00008-8 CrossRefGoogle Scholar
  9. Casalí J, Gastesi R, A’lvarez-Mozos J, De Santisteban LM, Del Valle de Lersundi J, Gime’nez R, Larrañaga A, Goñi M, Agirre U, Campo MA, López JJ, Donézar M (2008) Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain). Agric Water Manag 95:1111–1128. doi: 10.1016/j.agwat.2008.06.013 CrossRefGoogle Scholar
  10. Chou WC (2010) Modelling watershed scale soil loss prediction and sediment yield estimation. Water Resour Manag 24:2075–2090. doi: 10.1007/s11269-009-9539-6 CrossRefGoogle Scholar
  11. Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of north eastern India using USLE, GIS and remote sensing. Water Resour Manag 22:1783–1798. doi: 10.1007/s11269-008-9253-9 CrossRefGoogle Scholar
  12. Desmet PJJ, Govers G (1996) A GIS-procedure for automatically calculating the USLE LS-factor on topographically complex landscape units. J Soil Water Conserv 51:427–433Google Scholar
  13. Ferreira LG, Huete AR (2004) Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices. Int J Remote Sens 25:1837–1860. doi: 10.1080/0143116031000101530 CrossRefGoogle Scholar
  14. Foster GR, McCool DK, Renard KG, Moldenhauer WC (1981) Conversion of the universal soil loss equation to SI units. J Soil Water Conserv 36:355–359Google Scholar
  15. Gabriels D, Ghekiere G, Schiettecatte W, Rottiers I (2003) Assessment of USLE cover-management C-factors for 40 crop rotation systems on arable farms in the Kemmelbeek watershed, Belgium. Soil Tillage Res 74:47–53. doi: 10.1016/S0167-1987(03)00092-8 CrossRefGoogle Scholar
  16. Galindo IC, Margolis E (1989) Soil loss tolerance limits for Pernambuco state soils, Brazil. R Bras Ci Solo 13:95–100Google Scholar
  17. Gastmans D, Chang HK, Hutcheon I (2010) Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrogeol J. doi: 10.1007/s10040-010-0612-2 Google Scholar
  18. Govers G (1991) Rill erosion on arable land in central Belgium: rates, controls and predictability. Catena 18:133–155. doi: 10.1016/0341-8162(91)90013-N CrossRefGoogle Scholar
  19. INPE (Instituto Nacional de Pesquisas Espaciais) (2008) Image CBERS 2B. Sensor HRC. Channel 1. São José dos Campos: INPE. Satellite Image. Órbit 163 Point 123. July, 9th 2008. http://www.dgi.inpe.br/CDSR/. Last visited in August 2008
  20. Irvem A, Topaloglu F, Uygur V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336:30–37. doi: 10.1016/j.jhydrol.2006.12.009 CrossRefGoogle Scholar
  21. Jain MK, Das D (2010) Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour Manag 24:2091–2112. doi: 10.1007/s11269-009-9540-0 CrossRefGoogle Scholar
  22. Kinnell PIA (2010) Event soil loss, runoff and the universal soil loss equation family of models: a review. J Hydrol 385:384–397. doi: 10.1016/j.jhydrol.2010.01.024 CrossRefGoogle Scholar
  23. Lee S (2004) Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: a case study at Boun, Korea. Environ Geol 45:457–465. doi: 10.1007/s00254-003-0897-8 CrossRefGoogle Scholar
  24. Li L, Du S, Wu L, Liu G (2009) An overview of soil loss tolerance. Catena 78:93–99. doi: 10.1016/j.catena.2009.03.007 CrossRefGoogle Scholar
  25. Lombardi Neto F, Bertoni J (1975) Soil loss tolerance for soils of São Paulo state. Technical Bulletin n.28, Instituto Agronômico de Campinas, p 12Google Scholar
  26. Lufafa A, Tenywaa MM, Isabiryeb M, Majaliwaa MJG, Woomerc PL (2003) Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agric Syst 76:883–894. doi: 10.1016/S0308-521X(02)00012-4 CrossRefGoogle Scholar
  27. McCool DK, Brown LC, Foster GR (1987) Revised slope steepness factor for the universal soil loss equation. Trans ASAE 30:1387–1396Google Scholar
  28. McCool DK, Foster GR, Mutchler CK, Meyer LD (1989) Revised slope length factor for the universal soil loss equation. Trans ASAE 32:1571–1576Google Scholar
  29. Montebeller CA, Ceddia MB, Carvalho DF, Vieira SR, Franco EM (2007) Spatial variability of the rainfall erosive potential in the State of Rio de Janeiro, Brazil. Eng Agríc 27:426–435. doi: 10.1590/S0100-69162007000300011 CrossRefGoogle Scholar
  30. Nearing MA (1997) A single, continuous function for slope steepness influence on soil loss. Soil Sci Soc Am J 61:917–919CrossRefGoogle Scholar
  31. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154. doi: 10.1016/j.catena.2005.03.007 CrossRefGoogle Scholar
  32. Oliveira PTS, Rodrigues DBB, Alves Sobrinho T, Panachuki E (2010) Estimating of the USLE topographic factor from three algorithms. Ambi-Agua 5:217–225. doi: 10.4136/ambi-agua.149 CrossRefGoogle Scholar
  33. Ozcan AU, Erpul G, Basaran M, Erdogan HE (2008) Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass-Cankiri, Turkey. Environ Geol 5:1731–1741. doi: 10.1007/s00254-007-0779-6 CrossRefGoogle Scholar
  34. Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manag 21:729–746. doi: 10.1007/s11269-006-9061-z CrossRefGoogle Scholar
  35. Planurb. Urban Planning and Environmental Municipal Institute (1991) Geotechnical letter of Campo Grande City. City Hall of the Campo Grande, Campo GrandeGoogle Scholar
  36. Renschler CS, Harbor J (2002) Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research and implementation. Geomorphology 47:189–209. doi: 10.1016/S0169-555X(02)00082-X CrossRefGoogle Scholar
  37. Risse LM, Nearing MA, Nicks AD, Laflen JM (1993) Error assessment in the universal soil loss equation. Soil Sci Soc Am J 57:825–833CrossRefGoogle Scholar
  38. Schiettecatte W, D’hondt L, Cornelis WM, Acosta ML, Leal Z, Lauwers N, Almoza Y, Alonso GR, Días J, Ruíz M, Gabriels D (2008) Influence of landuse on soil erosion risk in the Cuyaguateje watershed (Cuba). Catena 74:1–12. doi: 10.1016/j.catena.2007.12.003 CrossRefGoogle Scholar
  39. Silva AM (2004) Rainfall erosivity map for Brasil. Catena 57:251–259. doi: 10.1016/j.catena.2003.11.006 CrossRefGoogle Scholar
  40. Silva AM, Casatti L, Álvares CA, Leite AM, Martinelli LA, Durrant SF (2007) Soil loss risk and habitat quality in streams of a meso-scale river basin. Sci Agric 64:336–343. doi: 10.1590/S0103-90162007000400004 Google Scholar
  41. Sparovek G, De Maria IC (2003) Multiperspective analysis of erosion tolerance. Sci Agric 60:409–416. doi: 10.1590/S0103-90162003000200029 CrossRefGoogle Scholar
  42. Sparovek G, Correchel V, Barretto AGOP (2007) The risk of erosion in Brazilian cultivated pastures. Sci Agric 64:77–82. doi: 10.1590/S0103-90162007000100012 CrossRefGoogle Scholar
  43. Tiwari AK, Risse LM, Nearing M (2000) Evaluation of WEPP and its comparison with USLE and RUSLE. Trans ASABE 43:1129–1135Google Scholar
  44. Wang G, Hapuarachchi P, Ishidaira H, Kiem AS, Takeuchi K (2009) Estimation of soil erosion and sediment yield during individual rainstorms at catchment scale. Water Resour Manag 23:1447–1465. doi: 10.1007/s11269-008-9335-8 CrossRefGoogle Scholar
  45. Wischmeier WH (1959) A rainfall erosion index for a universal soil-loss equation. Soil Sci Soc Am J 23:246–249CrossRefGoogle Scholar
  46. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. Agriculture Handbook n. 537, USDA, Washington, p 58Google Scholar
  47. Wischmeier WH, Johnson CB, Cross BV (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193Google Scholar
  48. Zhang KL, Shu AP, Xu XL, Yang QK, Yu B (2008) Soil erodibility and its estimation for agricultural soils in China. J Arid Environ 72:1002–1011. doi: 10.1016/j.jaridenv.2007.11.018 CrossRefGoogle Scholar
  49. Zhang X, Shao M, Li S, Peng K (2004) A review of soil and water conservation in China. J Geog Sci 14:259–274. doi: 10.1007/BF02837406 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Paulo Tarso Sanches de Oliveira
    • 1
  • Teodorico Alves Sobrinho
    • 1
  • Dulce Buchala Bicca Rodrigues
    • 1
  • Elói Panachuki
    • 2
  1. 1.Federal University of Mato Grosso do SulCampo GrandeBrazil
  2. 2.State University of Mato Grosso do SulAquidauanaBrazil

Personalised recommendations