Advertisement

Water Resources Management

, Volume 24, Issue 4, pp 795–814 | Cite as

Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS

  • Santiago Castaño
  • David SanzEmail author
  • Juan J. Gómez-Alday
Article

Abstract

Among the difficulties and uncertainties that arise when determining water balance is the calculation of groundwater abstraction. This factor is particularly important in aquifers whose extension and heavy agricultural use make direct quantification methods unfeasible (i.e. flow meters and power consumption data). This study presents a method of quantifying groundwater abstractions for irrigation based on the analysis of multitemporal and multispectral satellite images. The process begins with a highly detailed classification of irrigated crops; these data are entered in a Geographic Information System, overlain with a correct estimate of the irrigation requirements of the crop, and corrected in accordance with the agricultural practices of the area. The results reveal the spatial and temporal distribution of the groundwater volume abstracted and used for agriculture. This methodology has been applied in the Mancha Oriental Hydrogeological System (Spain, 7,260 km2), where abstractions for agriculture comprise more than 90% of the hydrological resources consumed. In this context, accuracies of over 95% have been obtained with a cost sixty times lower than that of traditional methods.

Keywords

Remote sensing GIS Hydrogeology Groundwater abstractions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad MD (2002) Estimation of net groundwater use irrigated river basins using geo-information techniques: a case study in Rechna Doab, Pakistan. Dissertation, University of WageningenGoogle Scholar
  2. Ahmad MD, Bastiaanssen GWM, Feddes RA (2005) A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches, Rechna Doab, Pakistan. Hydrogeol J 13:653–664CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. In: Guidelines for computing crop water requirements, FAO irrigation and drainage. Paper 56. FAO, Rome, 300 ppGoogle Scholar
  4. Asmuth JR, Knotters M (2004) Characterising groundwater dynamics based on a system identification approach. J Hydrol 296:118–34CrossRefGoogle Scholar
  5. Ballester A, Fernández JA, López-Geta JA (eds) (1999) Medida y evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  6. Bastiaanssen WGM, Molden D, Makin IW (2000) Remote sensing for irrigated agriculture: examples from research and possible applications. Agric Water Manag 46:137–155CrossRefGoogle Scholar
  7. Burt CM, Clemmens AJ, Strelkoff TS, Solomon KH, Bliesner RD, Hardy LA, Howell TA, Members ASCE, Eisenhauer DE (1997) Irrigation performance measures: efficiency and uniformity. J Irrig Drain Eng ASCE 20:423–442CrossRefGoogle Scholar
  8. Calera A (2003) Evolución de superficies en regadío mediante teledetección en el ámbito del acuífero de la Mancha Oriental. Años 1989, 1993 y 2003. (ERMOT 2003). Technical report, Remote Sensing and GIS Lab. Albacete, SpainGoogle Scholar
  9. Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources. Application to the aquifer system 08–29. Agric Water Manag 40:207–220CrossRefGoogle Scholar
  10. Calera A, Martínez C, Meliá J (2001) A procedure for obtaining green plant cover. Its relation with NDVI in a case study for barley. Int J Remote Sens 22(17):3357–3362CrossRefGoogle Scholar
  11. Calera A, Jochum A, Cuesta A, Montoro A, López-Fuster P (2005) Irrigation management from space: towards user-friendly products. Irrig Drain 19:337–353CrossRefGoogle Scholar
  12. Castaño S (1999) Aplicaciones de la Teledetección y SIG al control y cuantificación de las extracciones de agua subterránea. In: Ballester A, Fernández JA, López-Geta JA (eds) Medida y evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  13. Casterad MA, Herrero J (1998) Irrivol: a method to estimate the annual and monthly water applied in an irrigation district. Water Resour Res 34(11):3045–3049CrossRefGoogle Scholar
  14. Chuvieco E (2002) Teledetección ambiental. Ariel Ciencia, BarcelonaGoogle Scholar
  15. Confederación Hidrográfica del Júcar CHJ (1998) Plan Hidrológico de la Cuenca del Júcar. Documentación básica. MIMAM, Madrid. http://www.chj.es/. Accessed 8 April 2008Google Scholar
  16. Confederación Hidrográfica del Guadiana CHG (2007) Plan Especial del Alto Guadiana. MIMAM, Madrid. http://www.chguadiana.es/. Accessed 8 April 2008Google Scholar
  17. D’haeze D, Raes D, Deckers J, Phong TA, Lou HV (2005) Groundwater extraction of Coffea canephora in Ea Tul watershed, Vietnam—a risk evaluation. Agric Water Manag 73:1–19CrossRefGoogle Scholar
  18. Díaz-Mora J (1999) Experiencia de la instalación de contadores en los acuíferos de la cuenca alta del Guadiana. In: Ballester A, Fernández JA, López-Geta JA (eds) Medida y evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  19. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. V24 of FAO Irrigation and Drainage Paper, Food and Agriculture OrganizationGoogle Scholar
  20. El-Magd IA, Tanton T (2005) Remote sensing and GIS for estimation of irrigation crop water demand. Int J Remote Sens 26(11):2359–2370CrossRefGoogle Scholar
  21. Er-Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumption of wheat crops in semiarid region. Agric Water Manag 87:41–54CrossRefGoogle Scholar
  22. Estrela T, Fidalgo A, Fullana J, Maestu J, Pérez MA, Pujante AM (2004) Jucar Pilot River Basin. Provisional Article 5 Report pursuant to the Water Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain. http://www.chj.es/CPJ3/imagenes/Art5/Articulo_5_completo.pdf. Accessed 21 March 2007Google Scholar
  23. European Union (2000) Directive 200/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policyGoogle Scholar
  24. Font E (2004) Colaboración en el desarrollo y aplicación de un modelo matemático distribuido de flujo subterráneo de la Unidad Hidrogeológica 08.29 Mancha Oriental, en las provincias de Albacete, Cuenca y Valencia. Master thesis, Polythecnic University of Valencia. http://www.chj.es/web/pdf/MEMORIAPFCOPH.pdf. Accessed 17 April 2007
  25. Gallego FJ (2004) Remote sensing and land cover area estimation. Int J Remote Sens 25 (15):3019–3047CrossRefGoogle Scholar
  26. González Piqueras J (2006) Crop evapotranspiration by means of Remote Sensing determination of the crop coefficient. Regional scale application: Mancha Oriental Aquifer. Dissertation, Univ. of ValenciaGoogle Scholar
  27. Goodchild MF (ed) (1996) GIS and environmental modeling: progress and research issues. GIS World Books, Fort Collins, COGoogle Scholar
  28. Heilman JL, Heilman WE, Moore DG (1982) Evaluating the crop coefficient using spectral reflectance. Agron J 74:967–971Google Scholar
  29. Herrero J, Casterad MA (1999) Using satellite and other data to estimate the annual water demand of an irrigation district. Environ Monit Assess 55(2):305–317CrossRefGoogle Scholar
  30. IGME (1980) El sistema hidrogeológico de Albacete (Mancha Oriental). Sus recursos en aguas subterráneas, utilización actual y posibilidades futuras. IGME, MadridGoogle Scholar
  31. IGME (1998) Guía operativa para la evaluación de extracciones de aguas subterráneas mediante contadores eléctricos. Rendimientos y coste del agua. IGME, MadridGoogle Scholar
  32. Isidoro D, Quílez D, Aragües R (2004) Water balance and irrigation performance analisys: La Violada irrigation district (Spain) as a case study. Agric Water Manag 64:123–142CrossRefGoogle Scholar
  33. Jensen ME (1993) The impact of irrigation and drainage on the environment. 5th Gulhati Memorial Lect., International Commission on Irrigation and Drainage, The Hague. The NetherlandsGoogle Scholar
  34. Jensen ME, Burman, Allen RG (eds) (1990) Evapotranspiration and irrigation water requirements. American Society of Civil Engineers, Engineering Practices Manual, New YorkGoogle Scholar
  35. Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21(2):427–467CrossRefGoogle Scholar
  36. Kenny JF (eds) (2004) Guidelines for preparation of State water-use estimates for 2000: U.S. Geological Survey Techniques and Methods 4–A4, 49 pp. http://water.usgs.gov/watuse/. Accessed 15 April 2008
  37. Marín A (1999) Evaluación de las extracciones a partir de las estadísticas agrarias. In: Ballester A, Fernández JA, López-Geta JA (eds) Medida y Evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  38. Martín de Santa Olalla F, Calera A, Domínguez A (2003) Monitoring irrigation water use by combining irrigation advisory service, and remotely sensed data with geographic information system. Agric Water Manag 61:111–124CrossRefGoogle Scholar
  39. Maupin MA (1999) Methods to determinate pumped irrigation-water withdrawals from the Snake River between upper Salmon Falls and Swan Falls dams, Idaho, using electrical power data, 1990–1995. US Geological Survey Water-Resources Investigation. Report 99–4175, USGS, 20 ppGoogle Scholar
  40. Meijerink AMJ, Bannert D, Batelaan O, Lubczynski MW, Pointet T (2007) Remote sensing applications to groundwater. IHP-VI, Series on Groundwater (16) UNESCO, France. http://unesdoc.unesco.org/images/0015/001563/156300e.pdf. Accessed 25 April 2008Google Scholar
  41. MIMAM (2000) Libro Blanco del Agua en España. MIMAM, Madrid, 637 pGoogle Scholar
  42. Montesinos S (1990) Cuantificación de la extracción de aguas subterráneas mediante proceso digital de imágenes Landsat TM. Aplicación al acuífero de la Llanura Manchega. Dissertation, Univ. Complutense de MadridGoogle Scholar
  43. Montoro A (2008) Avances en el manejo del agua en la agricultura de riego. Dissertation, Univ. of Castilla–La ManchaGoogle Scholar
  44. Moran MS, Inoue Y, Barnes EM (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61:319–346CrossRefGoogle Scholar
  45. Moratalla A, Gómez-Alday JJ, De las Heras J, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha oriental hydrogeological system (SE Spain). Water Resour Manag 29:1621–1640. doi: 10.1007/s11269-008-9344-7 CrossRefGoogle Scholar
  46. Muñoz-Reinoso JC (2001) Vegetation changes and groundwater abstraction in SW Doñana, Spain. J Hydrol 242:197–209CrossRefGoogle Scholar
  47. Murray KE, Poeter EP, McCray JE (2003) Estimating spatially variable groundwater recharge rates using GIS. In: Poeter EP, Zheng C, Hill MC, Doherty J (eds) Proceedings of MODFLOW and More 2003 Understanding through Modeling. International Ground-Water Modeling Center, Golden, CO, pp 475–479Google Scholar
  48. Ozdogan M, Woodcock CE, Salvucci GD, Demir H (2006) Changes in summer irrigated crop area and water use in Southeastern Turkey from 1993 to 2002: implications for current and future water resources. Water Resour Manag 20(3):467–488CrossRefGoogle Scholar
  49. Raymond LH, Nalley GM, Retoman PL (1992) Evaluation of the use of remote-sensing data to identify crop types and estimate irrigated acreage, Uvalde and Medina Counties. US Geological Survey Water Resources Investigations Report 92–4117, 21 pp. http://water.usgs.gov/watuse/. Accessed 12 June 2008
  50. Roerink GJ, Bastiaanssen WGM, Chambouleyron J, Menenti M (1997) Relating crop water consumption to irrigation water supply by remote sensing. Water Resour Manag 11(6):445–465CrossRefGoogle Scholar
  51. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great plains with Third ERTS. ERTS Symposium. NASA, vol 351, pp 309–317Google Scholar
  52. Rubio JC (1999) Evaluación de las extracciones a partir del consumo energético. In: Ballester A, Fernández JA, López-Geta JA (eds) Medida y evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  53. Ruud N, Harter T, Naugle A (2004) Estimation of groundwater pumping as closure to the water balance of a semi-arid, irrigated agricultural basin. J Hydrol 297:51–73CrossRefGoogle Scholar
  54. Samper J (1999) Evaluación de las extracciones mediante balances hídricos. In: Ballester A, Fernández JA, López-Geta JA (eds) Medida y evaluación de las extracciones de agua subterránea. IGME, MadridGoogle Scholar
  55. Sanz D (2005) Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha oriental. Dissertation, Univ. Complutense de Madrid. http://www.ucm.es/BUCM/tesis/geo/ucm-t28173.pdf. Accessed 20 March 2008
  56. Sanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez Alfaro PM (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J. doi: 10.1007/s10040-009-0446-y Google Scholar
  57. Shah T (2005) Groundwater and human development: challenges and opportunities in livelihood and environment. Water Sci Technol 8:27–37Google Scholar
  58. Sophocleous M (2000) From safe yield to sustainable development of water resources. The Kansas experience. J Hidrol 235:27–43CrossRefGoogle Scholar
  59. Thunnissen HAM, Nieuwenhuis GJA (1998) An application of remote sensing and soil water balance simulation models to determine the effect of groundwater extraction on crop evapotranspiration. Agric Water Manag 15:315–332CrossRefGoogle Scholar
  60. Urrea RL (2004) Evapotranspiración de referencia: métodos de cálculo y de medición directa en una estación lisimétrica en ambientes semiáridos. Dissertation, Univ. of Castilla–La ManchaGoogle Scholar
  61. Valenzuela A (1997) Estudio comparativo de eficiencia de riego en California (USA) y el valle central de Chile. Agro-sur Dic 25(2):203–212Google Scholar
  62. Vaux HJ, Dale FH, Giboney PM (1990) An assessment of irrigation technology performance in the Southern San Joaquin Valley of California. Water Resour Res 26(1):35–41CrossRefGoogle Scholar
  63. Wright JL (1982) New evapotranspiration crop coefficients. J Irrig Drain Div ASCE 108:57–74Google Scholar
  64. Xie H, Tian YQ, Granillo JA, Keller GR (2007) Suitable remote sensing methods and data for mapping and measuring active crop fields. Int J Remote Sens 28(1–2):395–411CrossRefGoogle Scholar
  65. Xu Y, Mo X, Cai Y, Li X (2005) Analysis on groundwater table drawndown by land use and the quest for sustainable water use in the Hebei Plain in China. Agric Water Manag 75:38–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Santiago Castaño
    • 1
  • David Sanz
    • 1
    Email author
  • Juan J. Gómez-Alday
    • 1
  1. 1.Remote Sensing and GIS Group, Institute for Regional Development (IRD)University of Castilla-La Mancha (UCLM)AlbaceteSpain

Personalised recommendations