Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessment of Water Availability and Consumption in the Karkheh River Basin, Iran—Using Remote Sensing and Geo-statistics


This study was conducted to assess water availability and consumption in the Karkheh River Basin in Iran using secondary data and freely available satellite data. Precipitation was estimated using geo-statistical techniques while a Surface Energy Balance approach was selected for evapotranspiration estimation. The spatial distribution of actual evapotranspiration (ETa) for the Karkheh Basin has been estimated by use of 19 cloud free Moderate Resolution Imaging Spectroradiometer (MODIS) images, which cover a complete cropping year from November 2002 to October 2003. ETa estimates were compared to potential crop evapotranspiration (ETp) estimates for two predominantly irrigated wheat areas in Upper and Lower Karkheh. Differences were found to be 12.5% and 11.7% respectively. Results of the ETa and precipitation estimates reveal that for the study period, the Karkheh Basin received 18,507 × 106m3 as precipitation while ETa is estimated at 16,680 × 106m3. Estimated outflow from the basin for the study period only is 7.8% of the precipitation and indicates that water is a very scarce resource in the Karkheh basin. The basin has been divided in sub-basins to allow for more detailed analysis and results indicate that water balance closure at sub-basin scale ranges from 7.2% to 0.6% of the precipitation. This suggests that the water balance is sufficiently understood for policy and decision making.

This is a preview of subscription content, log in to check access.


  1. Ahmad MD, Bastiaanssen WGM, Feddes RA (2005) A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches, Rechna Doab, Pakistan. Hydrogeol J 13:653–664. doi:10.1007/s10040-004-0394-5

  2. Ahmad MD, Biggs T, Turral H, Scott CA (2006) Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India IWA. J Water Sci Technol 53(10):83–90. doi:10.2166/wst.2006.301

  3. Ahmad MD, Islam A, Masih I, Muthuwatta LP, Karimi P, Turral H (2008) Mapping basin level water productivity using remote sensing and secondary data in Karkheh river basin Iran. Accepted for oral presentation in CPWF special session at the 13th IWRA world water congress on global changes and water resources: confronting the expanding and diversifying pressures, 1–4 September, Montpellier, France

  4. Ahmad MD, Turral H, Nazeer A (2009) Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agric Water Manag 96:551–564

  5. Akbari M, Toomanian N, Droogers P, Bastiaanssen W, Gieske A (2007) Monitoring irrigation performance in Esfahan, Iran, using NOAA satellite imagery. Agric Water Manage 88:99–109

  6. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper, 56. FAO, 300 pp

  7. Allen RG, Tasumi M, Trezza R (2007) Satellite based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133(4):380–394

  8. Bandara KMPS (2003) Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season. Agric Water Manage 58(2):159–170. doi:10.1016/S0378-3774(02)00132-4

  9. Bastiaanssen WGM, Chandrapala L (2003) Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agric Water Manage 58(2):171–192. doi:10.1016/S0378-3774(02)00128-2

  10. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J Hydrol (Amst) 212–213:198–212. doi:10.1016/S0022-1694(98)00253-4

  11. Bastiaanssen WGM, Ahmad MD, Chemin Y (2002) Satellite surveillance of evaporative deplet aleon across the Indus Basin. Water Resour Res 38(12):1273–1282. doi:10.1029/2001WR000386

  12. Bos MG (2004) Using the deplet aled fraction to manage the groundwater table in irrigated areas. Irrig Drain Syst 18(3):201–209. doi:10.1007/s10795-004-0754-2

  13. Bos MG (2005) Is there enough fresh water? International Institute of Geo-Information Science and Earth Observation, Enschede

  14. Bos MG, Kselik RAL, Allen RG, Molden D (2009) Water requirements for irrigation and the environment. Springer, New York

  15. Brutsaert W (1999) Aspects of bulk atmospheric boundary layer similarity under free convective conditions. Rev Geophys 37(4):439–451. doi:10.1029/1999RG900013

  16. Daly C, Neilson RP, Phillips DL (1994) A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

  17. De Fraiture C, Cai X, Rosegrant M, Molden D, Amarasinghe U (2003) Addressing the unanswered questions in global water policy: a met aleodology framework. Irrig Drain 52:21–30

  18. Domingo F, Villagarcy L, Boer MM, Alados-Arboledas L, Puigdefa’bregas J (2001) Evaluating the long-term water balance of arid zone stream bed veget aletion using evapotranspiration modeling and hill slope runoff measurements. J Hydrol (Amst) 243:17–30. doi:10.1016/S0022-1694(00)00398-X

  19. Doorenbos J, Kassam AH (1979) Yield response to water. Irrigation and drainage paper 33. FAO Rome, Italy

  20. Droogers P, Bastiaanssen W (2002) Irrigation performance using hydrological modelling and remote sensing. J Irrig Drain Eng 128(1):11–18. doi:10.1061/(ASCE)0733-9437(2002)128:1(11)

  21. Farah OH, Bastiaanssen WGM, Feddes RA (2004) Evaluation of the temporal variability of the evaporative fraction in a tropical watershed. Int J Appl Earth Obs Geoinform 5:129–140. doi:10.1016/j.jag.2004.01.003

  22. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–46. doi:10.1016/S0016-7061(98)00078-0

  23. Hemakumara M, Chandrapala L, Moene AF (2003) Evapotranspiration fluxex over mixed veget aletion areas measured from large aperture scintillomet aler. Agric Water Manage 88:109–122. doi:10.1016/S0378-3774(02)00131-2

  24. Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol (Amst) 349:411–424. doi:10.1016/j.jhydrol.2007.11.017

  25. Jia L, Su Z, van den Hurk B, Menenti M, Moene A, De Bruin HAR, Yrisarry JJB, Ibanez M, Cuesta A (2003) Estimation of sensible heat flux using the surface energy balance system (SEBS) and ATSR measurements. Phys Chem Earth Parts ABC 28(1–3):75–88. doi:10.1016/S1474-7065(03)00009-3

  26. Jin X, Wan L, Su Z (2005) Research on evaporation of Taiyuan basin area by using remote sensing. Hydrol Earth Syst Sci Discuss 2:209–227

  27. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, New York

  28. Kite GW, Droogers P (2000) Comparing evapotranspiration estimates from satellites, hydrological models and field data. J Hydrol (Amst) 229(1–2):3–18. doi:10.1016/S0022-1694(99)00195-X

  29. Koloskov G, Mukhamejanov K, Tanton TW (2007) Monin–Obukhov length as a cornerstone of the SEBAL calculations of evapotranspiration. J Hydrol (Amst) 335:170–179. doi:10.1016/j.jhydrol.2006.11.010

  30. Loheide SP II, Gorelick SM (2005) A local scale high-resolution evapotranspiration mapping algorithm (ETMA) with hydrological applications at riparian meadow restoration sites. Remote Sens Environ 98:182–200

  31. Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005) Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30:69–79

  32. Masih I, Ahmad MD, Turral H, Uhlenbrook S, Karimi P (2009) Analysing streamflow variability and water allocation for sustainable management of water resources in the Karkheh river basin, Iran. Phys Chem Earth 34:329–340

  33. Marjanizadeh S (2008) Developing a “best case scenario” for Karkheh River Basin management (2025 horizon); a case study from Karkheh River Basin, Iran. Ph.D. thesis, University of Natural Resources and Applied Life Sciences, Vienna

  34. McCabe MF, Wood EF (2006) Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens Environ 106:271–285. doi:10.1016/j.rse.2006.07.006

  35. Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

  36. Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107:1–27. doi:10.1256/smsqj.45101

  37. Nichols WE, Cuenca RH (1993) Evaluation of the evaporative fraction for the paramet alerization of the surface energy balance. Water Resour Res 29(11):3681–3690. doi:10.1029/93WR01958

  38. Phillips DL, Dolph J, Marks D (1992) A comparison of geostatistical procedures for spatial analysis of precipitations in mountainous terrain. Agric For Meteorol 58:119–141. doi:10.1016/0168-1923(92)90114-J

  39. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manage 80:5–22. doi:10.1016/j.agwat.2005.07.001

  40. Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B Hydrol Oceans Atmos 25(2):147–157. doi:10.1016/S1464-1909(99)00128-8

  41. Sen Z, Habib Z (2000) Spatial precipitation assessment with elevation by using point cumulative semivariogram technique. Water Resour Manage 14:311–325. doi:10.1023/A:1008191012044

  42. Shuttleworth WJ, Gurney RJ, Hsu AY, Ormsby JP (1989) FIFE: the variation in energy partition at surface flux sites. IAHS Publ 186:67–74

  43. Su Z (2002) The Surface energy balance system (SEBS) for estimation of turbulent heat flux. Hydrol Earth Syst Sci 6(1):85–89

  44. Su Z, Yacob A, Wen J, Roerink G, He Y, Gao B, Boogaard H, Diepen CV (2003) Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys Chem Earth 28:89–101

  45. Sutcliffe JV, Carpenter TG (1968) The assessment of runoff from the mountainous and semi-arid areas in western Iran. Hydrological aspects of the utilization of water (IAHS General Assembly of Bern). IAHS public. 76. IAHS, Wallingford, UK, pp 383–394

  46. Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21(3):365–380

  47. Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. thesis, University of Idaho

  48. Zwart SJ, Bastiaanssen WGM (2007) SEBAL for det alecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agric Water Manage 89:287–296. doi:10.1016/j.agwat.2007.02.002

Download references

Author information

Correspondence to L. P. Muthuwatta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muthuwatta, L.P., Ahmad, M., Bos, M.G. et al. Assessment of Water Availability and Consumption in the Karkheh River Basin, Iran—Using Remote Sensing and Geo-statistics. Water Resour Manage 24, 459–484 (2010). https://doi.org/10.1007/s11269-009-9455-9

Download citation


  • Evapotranspiration
  • Remote sensing
  • Spatial analysis
  • Water balance
  • Karkheh