Advertisement

Water Resources Management

, Volume 21, Issue 3, pp 591–609 | Cite as

Flood hazard assessment of Atrato River in Colombia

  • S. Mosquera-Machado
  • Sajjad Ahmad
Original Article

Abstract

The flood hazard caused by Atrato River in Quibdó, northwest of Colombia is assessed using statistical modeling techniques (Gumbel and GRADEX), hydraulic modeling with HEC-RAS and the Geographic Information Systems (GIS). Three flood hazard maps for return periods of 10, 20 and 50 years are generated. The flood hazard modeling reveals that the flooded zone is more significant out of the left (West) bank than out of the right (East) bank of Atrato River. For the three return periods the maximum depth of water reached by the river and extent of flooding are estimated. Sensitivity analysis on roughness coefficient and peak discharge is performed. For 50 year return period (Q =3054 m3/s), water depth on the left and right bank of Atrato River is 3.7 m and 3.1 m, respectively. This information is useful in defining the minimum height of flood protection structures such as dikes to protect the area from flooding. The results can be useful for evacuation planning, estimation of damages and post flood recovery efforts.

Keywords

Flood modeling GIS Gumbel GRADEX Flood hazard Flood map Atrato River Quibdó Colombia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta Z, Ruiz D (1997) Adaptación del método Gradex en cuencas antioqueñas. Dissertation. Universidad Nacional de ColombiaGoogle Scholar
  2. Ahmad S, Simonovic SP (2001) A decision support tool for evaluation of impacts of flood management policies. Hydrol Sci Technol 17(1–4):11–22Google Scholar
  3. Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Resour Manage 20:391–410Google Scholar
  4. Becker A, Grunewald U (2003) Disaster management: Flood Risk in Central Europe. Scienc 300(5622):1099–1099CrossRefGoogle Scholar
  5. Beven KJ, Carling PA (1992) Velocities, roughness and dispersion in a lowland River Severn. In: Carling PA, Petts GE (eds) Lowland floodplain rivers: Geopmorphological perspectives. John Wiley& Sons Ltd., Chichester, pp 71–93Google Scholar
  6. Blöschl G, Burlando P, Merz R, Pfaundler M, Piock-Ellena U (2000) An intercomparison of regional flood frequency methods. Eos Trans AGU 81(48), Fall Meeting Suppl., Abstract H62F-11Google Scholar
  7. Bouvard M, Garros-Berthet H (1994) Les crues de projet des barrages: Méthode du Gradex. Bulletin du Comité Franccais des Grands Barrages, Barrages et Réservoirs, 18th ICOLD Congress, No. 2, 95 ppGoogle Scholar
  8. Bontron G, Menez G, Duband D, Gautier JN (1999) Application de la methode du Gradex a des grands bassins versants; cas de la Loire au Bec d'Allier (32,000, km2). Houille Blanche 54(6):29–36CrossRefGoogle Scholar
  9. Cardona A, Londoño G (1991) Calibración de los parámetros del modelo de William y Hanns para cuencas antioqueñas. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  10. Case JE, Durán LG, López A, Moore R (1971) Tectonic investigations in Western Colombia and Eastern Panama. Bull Geol Soc Am 82:2685–2711CrossRefGoogle Scholar
  11. Chow VT (1959) Open Channel Hydraulics. McGraw-Hill Book Company, New YorkGoogle Scholar
  12. Cossio U (1994) Mapa geológico generalizado del departamento del Chocó. Escala 1:600.000 Memoria Explicativa. Ingeominas, pp 7–46Google Scholar
  13. Congressional Natural Hazards Caucus Work Group (2001) Discussion paper for the Congressional Natural Hazards Caucus. Website: http://www.agiweb.org/workgroup.
  14. Departamento Administrativo Nacional de Estadísticas-DANE (1993) V censo nacional de la población. Bogota, ColombiaGoogle Scholar
  15. Crosetto M, Tarantola S, Saltelli A (2000) Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems and Environmen, pp 71–79Google Scholar
  16. Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M with Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G (2005) Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University, Washington, DCGoogle Scholar
  17. Duband D, Garros-Berthet H (1994) Design flood determination by the Gradex method. In Bulletin du Comité Franccais des Grands Barrages, Barrages et Reservoirs (CFGB), 96 ppGoogle Scholar
  18. Duque-Caro H (1990) El bloque del Chocó en el noroccidente colombiano: implicaciones estructurales, tectonoestratigráficas y paleogeográficas. Boletin Geológico Ingeominas 31(1):47–71Google Scholar
  19. Eastman R (1997) IDRISI Geographic Information System, User's Guide Version 2.0. Clark Labs for Geographic Technology and Geographic Analysis, Clark University, Worcester MA. [Available from Clark Labs for Geographic Technology and Geographic Analysis, Clark University, 950 Main St., Worcester, MA 01610]Google Scholar
  20. Eslava JA (1992) La precipitación en la región del Pacífico colombiano (Lloró: el sitio más lluvioso del mundo). Revista Zenit 3:47–71Google Scholar
  21. Eslava JA (1994) Acerca de la distribución espacio-temporal de la precipitación en la región del pacífico Colombiano. Atmosfera 22:71–80Google Scholar
  22. ESRI (1997) ArcView GIS 3.2 User's manual, Redlands, CAGoogle Scholar
  23. Figueroa SN, Nobre CA (1990) Precipitation distribution over central and western tropical South America. Climanálise 5:36–45Google Scholar
  24. Franco CJ, Pérez CA (1995) Regionalización de Caudales máximos en Antioquia. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  25. Freeze RA, Harlan RL (1969) Blueprint for a physically-based digitally-simulated hydrological response model. Journal of Hydrology 9:237–258CrossRefGoogle Scholar
  26. Garccon R (1993) The gradex method: for a statistically robust evaluation of extreme values floods based on local characteristics. Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Waterloo, CanadaGoogle Scholar
  27. Government of Colombia (1993) World Heritage List Nomination Form. Los Katíos National Park (Colombia). Extension of the World Heritage Status hold by El Darién National Park in Panama. 15 ppGoogle Scholar
  28. Guillot P, Duband D (1967) La méthode du Gradex pour le calcul de la probabilité'des cruesá partir des pluies. Coloque International sur les crues et leurévaluation. In: Proceedings of the Leningrad Symposium 15–22 August, IASH, 84:560–569Google Scholar
  29. Guillot P (1973) Précisions sur la méthode du Gradex: utilisation de l'information logique pour l'évaluation de la crue de projet. Proceeding International Commission On Large Damns, XI Congress, Madrid 41:131–136Google Scholar
  30. Gumbel EJ (1958) Statistics of Extremes. Columbia University Press, New York, New YorkGoogle Scholar
  31. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns in South American floodplains. Journal of Geophysical Research 107(D20). DOI 10.1029/2000JD000306Google Scholar
  32. Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrolog Process 18(11):2103–2116CrossRefGoogle Scholar
  33. Horel JD, Cornejo-Garrido AG (1986) Convection Along the coastal of northern Peru during 1983: spatial and temporal variation of clouds and rainfall. Mon Weather Rev 114:2091–2105CrossRefGoogle Scholar
  34. Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sensing 22(13):2489–2507CrossRefGoogle Scholar
  35. IDEAM (1997) National institute of hydrology, meteorology and environmental research. Hydrometeorological information systemGoogle Scholar
  36. Instituto Geografico Agustin Codazzi-IGAC (1977) Estudio General de Suelos del Municipio de Quibdo. Subdirección Agrológica. Instituto Geográfico Agustín Codazzi. BogotáGoogle Scholar
  37. Jonkman SN (2005) Global Perspectives on Loss of Human Life Caused by Floods. Nat Hazards 34(2):151–175CrossRefGoogle Scholar
  38. Macía C (1985) Características petrográficas y geoquímicas de rocas basálticas de la península del Cabo Corrientes (Serranía de Baudó). Colombia. Geología Colombiana 14:25–37Google Scholar
  39. Melching CS (1995) Reliability estimation. In: Singh VP (ed) Computer models for watershed hydrology. Water Resources Publications, pp 69–118Google Scholar
  40. Mesa OJ, Poveda G, Carvajal LF (1997) Introducción al clima de Colombia. Universidad Nacional de Colombia, 390 ppGoogle Scholar
  41. Merz R, Blöschl G, Piock-Ellena U (1999) Applicability of the Gradex-Method in Austria. Oesterreichische Wasser und Abfallwirtschaft 51(11–12):291–305Google Scholar
  42. Mic R, Galéa G, Javelle P (2002) Floods regional modeling of the Cris watershed: classical regional and reference models approach. Revue des Sciences de l'Eau 15(3):677–700Google Scholar
  43. Mosquera-Machado SC (2002) Analyse multi-aléas et risques naturels dans le Département du Chocó, Nord-Ouest de Colombie. Doctoral dissertation, Terre& Environnement, Section des Sciences de la Terre, Université de Genéve, Vol. 37, 159 ppGoogle Scholar
  44. Mosquera-Machado SC (2006) Análisis multiriesgos de los desastres naturales del Chocó, durante las tresúltimas décadas: 1970–2000. Entorno Geográfico (in press)Google Scholar
  45. NIBH/EESC/USP (2004) Reflections on flood impacts and proposals of mitigating public policy. Internal Report#2, SHS-EESC-USP, Sao Carlos, Brazil (in Portuguese)Google Scholar
  46. Nygren WE (1950) The Bolivar Geosinclyne in northwestern South America. Bull Am Assoc Petroleum Geologists 4(10):1998–2006Google Scholar
  47. Ouarda TB, Lang M, Bobée B, Bernier J, Bois P (1999) Analysis of regional flood models utilized in France and Québec. Revue des Sciences de l'Eau 12(1):155–182Google Scholar
  48. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean–land–atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678CrossRefGoogle Scholar
  49. Robayo O, Whiteaker T, Maidment D (2004) Converting a NEXRAD map to a floodplain map. Paper presented at the meeting of the American Water Resources Association, Nashville, Tennessee, May 17–19, 2004Google Scholar
  50. Seibert J (1997) Estimation of parameter uncertainty in the hbv model. Nord Hydrol 28:247–262Google Scholar
  51. Sellin R, Bryant T, Loveless J (2003) An improved method for roughening floodplains on physical river models. J Hydraulics Res 41:3–14CrossRefGoogle Scholar
  52. Simonovic SP, Ahmad S (2005) Computer-based model for flood evacuation emergency planning. Natural Hazards 34(1):25–51CrossRefGoogle Scholar
  53. Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol Process 11:1427–1439CrossRefGoogle Scholar
  54. United Nation Development Programme-UNDP (2004) Reducing disaster risk: A challenge for development. United Nations Development Programme, Bureau for Crisis Prevention and Recovery, New York, 146 ppGoogle Scholar
  55. US Army Corps of Engineers (USACE) (1998) HEC-RAS River Analysis System, User's Manual Version 2.2. Hydrologic Engineering Center, Davis, CaliforniaGoogle Scholar
  56. Wadsworth G (1999) Flood damage statistics. Public Works Department, Napa, CAGoogle Scholar
  57. Wolfgang J, Karin F (1993) A general review of tropical South American floodplains. Wetlands Ecol Manage (Historical Archive) 2(4):231–238Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.International Research Institute for Climate and Society The Earth InstituteColumbia University 61 Rt. 9WPalisadesUSA
  2. 2.Department of Civil, and Environmental EngineeringUniversity of NevadaLas VegasUSA

Personalised recommendations