Skip to main content
Log in

Mesoscale Meteorological Simulations of Summer Ozone Episodes in Mexicali and Monterrey, Mexico: Analysis of Model Sensitivity to Grid Resolution and Parameterization Schemes

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

Air quality in the Mexican cities of Monterrey, Nuevo Leon, and Mexicali, Baja California, has suffered great detriment in recent years. It is well known that meteorology is one of the main factors affecting the dynamics of pollutants in the atmosphere. Here, the Penn State/NCAR Meteorological Mesoscale Model (MM5) meteorological system was applied to identify meteorological conditions conducive to high-ozone concentrations in such regions. Two summer 2001 ozone episodes for each geographical domain were selected with the aid of a classification and regression tree analysis technique. Model response to changes in its physical parameterization, horizontal grid resolution, and data assimilation schemes were assessed. Once a suitable configuration was selected, performance statistics were computed for model validation. MM5 simulated satisfactorily the meteorology of such episodes, yielding indexes of agreement of 0.4–0.8 for wind speed and 0.67–0.95 for temperature, on average. However, MM5 tended to underestimated temperature and overestimated wind speed. Froude numbers were calculated to analyze the impact of the terrain complexity on wind circulation. It was concluded that in both cities, wind convergence zones might enhance high-ozone concentrations. These results improve our understanding of the atmospheric processes exerting effect on air pollution within these airsheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arunachalam, S., Holland, A., Do, B., & Abraczinskas, M. (2006). A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA. Atmospheric Environment, 40, 5010–5026.

    Article  CAS  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont: Wadsworth.

    Google Scholar 

  • Brooks, H. E., Doswell, C. A., & Maddox, R. A. (1992). On the use of mesoscale and cloud-scale models in operational forecasting. Weather Forecasting, 7, 120–132.

    Article  Google Scholar 

  • Chen, F., & Dudhia, J. (2001). Coupling an advanced land-surface/hydrology model with the penn state/NCAR MM5 modeling system. Part I: Model implementation and Sensitivity. Monthly Weather Review, 129, 569–585.

    Article  Google Scholar 

  • Choi, Y. J., Hyde, P., & Fernando, H. J. S. (2006). Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: applications to a pair to cities in the US/Mexico border. Atmospheric Environment, 40, 5181–5201.

    Article  CAS  Google Scholar 

  • CIDE, Centro de Investigación y Docencia Económicas (2007) Competitividad de las Ciudades Mexicanas 2007. http://www.cide.edu/programas/. Accessed 13 November 2008.

  • Cohan, D. S., Hu, Y., & Russell, A. G. (2006). Dependence of ozone sensitivity analysis on grid resolution. Atmospheric Environment, 40, 126–135.

    Article  CAS  Google Scholar 

  • de Foy, B., Clappier, A., Molina, L. T., & Molina, M. J. (2006). Distinct wind convergence patterns in the Mexico City basin due to the interaction of gap winds with the synoptic flow. Atmospheric Chemistry and Physics, 6, 1249–1265.

    CAS  Google Scholar 

  • Dudhia, J. (1996). A multi-layer soil temperature model for MM5.Sixth PSU/NCAR Mesoscale Model Users' Workshop.

  • Emery, C. A., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Novato: ENVIRON International Corp.

    Google Scholar 

  • Fields, G. P., Houdashett, C. L., Carlson, P. (1993). State Implementation Plan for PM-10 in the Imperial Valley. Final Report. Prepared for: Imperial County Air Pollution Control District. by E.H. Pechan and Associates, Inc. Pechan report No. 93.04.006/449.

  • Grell, G. A., Dudhia, J., Stauffer, D. (1995) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note TN-398-STR. NCAR. Boulder, CO.

  • Grossman-Clarke, S., Zehnder, J. A., Stefanov, W. L., Liu, Y., & Zoldak, M. A. (2005). Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. Journal of Applied Meteorology, 44, 1281–1297.

    Article  Google Scholar 

  • Hong, S.-Y., & Pan, H.-L. (1996). Nonlocal boundary layer vertical diffusion in a medium range forecast model. Monthly Weather Review, 124, 2322–2339.

    Article  Google Scholar 

  • Instituto Nacional de Ecología (1997) Programa de la administración de la calidad del aire del área metropolitana de Monterrey 1997-2000. México. http://www.ine.gob.mx/ueajei/publicaciones/consultaPublicacion.html?id_pub=234. Accessed 10 November 2006.

  • Instituto Nacional de Ecología (2004) Almanaque de datos y tendencias de la calidad del aire en ciudades mexicanas. México: Secretaría de Medio Ambiente y Recursos Naturales.

  • Instituto Nacional de Geografía y Estadística (2008) Principales resultados por localidad 2005 (ITER). http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/conteo2005/localidad/iter/. Accessed 20 October 2008.

  • Jazcilevich, A. D., García, A. R., & Ruiz-Suárez, G. (2003). A study of air flow patterns affecting pollutant concentrations in the Central Region of Mexico. Atmospheric Environment, 37, 183–193.

    Article  CAS  Google Scholar 

  • Kemball-Cook, S., Jia, Y., Emery, C., Morris, R., Wang, Z. (2004). 2002 Annual MM5 Simulation to Support WRAP CMAQ Visibility Modeling for the Section 308 SIP/TIP: MM5 Sensitivity Simulations to Identify a More Optimal MM5 Configuration for Simulating Meteorology in the Western United States.

  • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., et al. (2000). Development of global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21, 1303–1330.

    Article  Google Scholar 

  • MacDonald, C. P., Roberts, P. T., Main, H. H., Dye, T. S., Coe, D. L., & Yarbrough, J. (2001). The 1996 Paso del Norte Ozone Study: analysis of meteorological and air quality data that influence local ozone concentrations. Science of the Total Environment, 276, 93–109.

    Article  CAS  Google Scholar 

  • Mao, Q., Gautney, L. L., Cook, T. M., Jacobs, M. E., Smith, S. N., & Kelsoe, J. J. (2006). Numerical experiments on MM5-CMAQ sensitivity to various PBL schemes. Atmospheric Environment, 40, 3092–3110.

    Article  CAS  Google Scholar 

  • Mass, C. F., Ovens, D., Westrick, K., Colle, B. A. (2002). Does increasing horizontal resolution produce more skillful forecasts? Bulletin of the American Meteorological Society, 407-418.

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogenous atmospheres: RRTM, a valid correlated-k model for the long wave. Journal of Geophysical Research, 102, 16663–16682.

    Article  CAS  Google Scholar 

  • Oanh, K., Chutimon, P., Ekbordin, W., & Supat, W. (2005). Meteorological pattern classification and application for forecasting air pollution episode potential in a mountain-valley area. Atmospheric Environment, 39, 1211–1225.

    Article  CAS  Google Scholar 

  • Olerud, D., Sims, A. (2004) Protocol for annual MM5 modeling in support of VISTAS (visibility improvement –state and tribal association). http://baronams.com/projects/VISTAS/reports. Accessed 25 April 2006.

  • Pérez, C., Jiménez, P., Orba, O., Sicard, M., & Baldasano, J. M. (2006). Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the Western Mediterranean. Atmospheric Environment, 40, 5274–5297.

    Article  CAS  Google Scholar 

  • Pielke, R. A. (2002). Mesoscale meteorological modeling. San Diego: Academic.

    Google Scholar 

  • Pleim, J. E., & Chang, J. S. (1992). A non-model for vertical mixing in the convective boundary layer. Atmospheric Environment, 26A, 965–981.

    CAS  Google Scholar 

  • Pleim, J. E., & Xiu, A. (1995). Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. Journal of Applied Meteorology, 34, 16–32.

    Article  Google Scholar 

  • Queen, A., Zhang, Y., Gilliam, R., Pleim, J. (2008) Examining the sensitivity of MM5-CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part I- Database, evaluation protocol, and precipitation predictions. Atmospheric Environment, In press.

  • Russell, A. G. (1997). Regional photochemical air quality modeling: model formulations, history, and state of the science. Annual Review of Energy and the Environment, 22, 537–588.

    Article  Google Scholar 

  • Seaman, N. L. (2000). Meteorological modeling for air-quality assessments. Atmospheric Environment, 34, 2231–2259.

    Article  CAS  Google Scholar 

  • Seaman, N. L., Stauffer, D., & Lario, A. A. (1995). Multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: modeling design and basic performance characteristics. Journal of Applied Meteorology, 34, 1739–1761.

    Article  Google Scholar 

  • Skamarock, W. C., Weisman, M. L., & Klemp, J. B. (1994). Three-dimensional evolution of simulated long-lived squall lines. Journal of Atmospheric Science, 51, 2536–2584.

    Article  Google Scholar 

  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D. O., Baker, D. M., Duda, M. G., et al. (2008) A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, NCAR, Boulder, CO.

  • Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht: Kluwer.

    Google Scholar 

  • Sweedler, A., Fertig, M., Collins, K., & Quintero-Núñez, M. (2003). Air quality in the california-baja california border region. In The US mexican border environment air quality issues along the US mexican border. SCERP Monograph Series No. 6, 15-58. San Diego: San Diego State University Press.

    Google Scholar 

  • U.S. Census Bureau (2008) State and County Quick Facts. http://quickfacts.census.gov/qfd/states/06/06025.html. Accessed 13 November 2008.

  • Vanoye García, A. Y. (2007) Determinación de patrones meteorológicos conducentes a episodios de contaminación atmosférica en Monterrey y Mexicali empleando un modelo meteorológico de mesoescala. M.Sc. Thesis. Monterrey, México: Tecnológico de Monterrey.

  • Villaseñor, R., López-Villegas, M., Eidels-Dubovoi, S., Quintanar, A., & Gallardo, J. C. (2003). A mesoscale modeling study of windblown dust on the Mexico City Basin. Atmospheric Environment, 37, 2452–2462.

    Google Scholar 

  • Xiu, A., & Pleim, J. E. (2001). Development of a land surface model. Part I: application in a mesoscale meteorological model. Journal of Applied Meteorology, 40, 192–209.

    Article  Google Scholar 

  • Zhang, Y., Liu, P., Pun, B., & Seigneur, C. (2006). A comprehensive performance study of MM5-CMAQ for the Summer 1999 Southern Oxidants Study episode – Part I: Evaluation protocols, databases and meteorological predictions. Atmospheric Environment, 40, 4825–4838.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by LASPAU through its Border Ozone Reduction and Air Quality Improvement Program and by Tecnológico de Monterrey through grant number CAT-052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Y. Vanoye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanoye, A.Y., Mendoza, A. Mesoscale Meteorological Simulations of Summer Ozone Episodes in Mexicali and Monterrey, Mexico: Analysis of Model Sensitivity to Grid Resolution and Parameterization Schemes. Water Air Soil Pollut: Focus 9, 185–202 (2009). https://doi.org/10.1007/s11267-009-9205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-009-9205-2

Keywords

Navigation