Water, Air, & Soil Pollution: Focus

, Volume 8, Issue 1, pp 3–21 | Cite as

A Multiscale Approach for Assessing the Interactions of Environmental and Biological Systems in a Holistic Health Risk Assessment Framework

  • Panos G. Georgopoulos


Advances in computing processing power and in availability of environmental and biological data have allowed the development and application of comprehensive modeling systems that utilize a holistic, integrated, approach for assessing the interactions of environmental and biological systems across multiple scales of spatiotemporal extent and biological organization. This approach allows mechanism-based environmental health risk assessments in a person-oriented framework, which accounts for simultaneous exposures to contaminants from multiple media, routes, and pathways. The conceptual basis and example applications of the Modeling ENvironment for TOtal Risk (MENTOR), and the DOse–Response Information ANalysis system (DORIAN) are presented.


Comprehensive modeling systems DORIAN MENTOR Environmental health Risk assessments Exposures to mixtures 



Support for this work has been provided primarily by the USEPA-funded Environmental Bioinformatics and Computational Toxicology Center (ebCTC) under STAR Grant No. GAD R 832721-010, and the USEPA funded Center for Exposure and Risk Modeling (CERM) under Cooperative Agreement no. CR-83162501. This work has not been reviewed by and does not represent the opinions of the funding agency. Appreciation is extended to the research team of CCL, with special thanks to Profs S. Isukapalli and S. W. Wang, as well as to A. Sasso, Y. C. Yang, and P. Shade. Thanks are also due to Prof P.J. Lioy (CERM), Prof W. Welsh (ebCTC), Dr W. Tong (USFDA-NCTR Center for Toxicoinformatics), and to the numerous USEPA and EOHSI collaborators who have contributed to this research.


  1. Abdel-Rahman, S. M., & Kauffman, R. E. (2004). The integration of pharmacokinetics and pharmacodynamics: Understanding dose–response. Annual Review of Pharmacology and Toxicology, 44, 111–136.CrossRefGoogle Scholar
  2. Balakrishnan, S., Roy, A., Ierapetritou, M. G., Flach, G. P., & Georgopoulos, P. G. (2003). Uncertainty reduction and characterization of complex environmental fate and transport models: An empirical Bayesian framework incorporating the Stochastic Response Surface Method. Water Resources Research, 39, 1350.CrossRefGoogle Scholar
  3. Balakrishnan, S., Roy, A., Ierapetritou, M. G., Flach, G. P., & Georgopoulos, P. G. (2005). A comparative assessment of efficient uncertainty analysis techniques for environmental fate and transport models: Application to the FACT model. Journal of Hydrology, 307, 204–218.CrossRefGoogle Scholar
  4. BMBF (2002). Systeme des Lebens Systembiologie. Bundesministerium fur Bildung und Forschung (BMBF). Germany: BMBF.Google Scholar
  5. Brazhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene networks: How to put the function in genomics. Trends Biotechnol, 20, 467–472.CrossRefGoogle Scholar
  6. Buck, J. W., Tolle, D. A., Whelan, G., Mast, T. J., Peffers, M. S., Evers, D. P., et al. (2003). Design of the comprehensive chemical exposure framework and identification of research needs for American Chemistry Council. Prepared for American Chemistry Council Long Range Research Initiative Team by Battelle Pacific Northwest Division. Arlington, Virginia. Richland, WA: PNWD (PNWD–3184).Google Scholar
  7. Byun, D. W., & Ching, J. K. S. (1999). Science algorithms for the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Research Triangle Park, NC: US Environmental Protection Agency, National Exposure Research Laboratory (EPA/600/R-99/030).Google Scholar
  8. CDC (2005). NHANES national health and nutrition examination survey. Available at:
  9. Christakos, G., Bogaert, P., & Serre, M. L. (2001). Temporal GIS: Advanced functions for field-based applications. New York: Springer.Google Scholar
  10. Christensen, F. M., Bruijn, J. H. M. D., Hansen, B. G., Munn, S. J., Sokull-Klüttgen, B., & Pedersen, F. (2003). Assessment tools under the new European Union chemicals policy (pp. 5–19). UK: Greener Management International (Spring 2003).Google Scholar
  11. CIIT (2006). Multiple Path Particle Dosimetry Model (MPPD v 2.0): A model for human and rat airway particle dosimetry. Available at: CIIT Centers for Health Research
  12. Crampin, E. J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., et al. (2004). Computational physiology and the Physiome Project. Experimental Physiology, 89, 1–26.CrossRefGoogle Scholar
  13. Daigle, C. C., Chalupa, D. C., Gibb, F. R., Morrow, P. E., Oberdorster, G., Utell, M. J., et al. (2003). Ultrafine particle deposition in humans during rest and exercise. Inhalation Toxicology, 15, 539–552.CrossRefGoogle Scholar
  14. Danhof, M., de Jongh, J., De Lange, E. C., Della Pasqua, O., Ploeger, B. A., & Voskuyl, R. A. (2007). Mechanism-based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annual Review of Pharmacology and Toxicology, 47, 357–400.CrossRefGoogle Scholar
  15. Foley, G., Georgopoulos, P. G., & Lioy, P. J. (2003). Examining accountability for changes in population exposures to 8-hour ozone standard with implementation of different control strategies. Environmental Science and Technology, 37, 302A–309A.CrossRefGoogle Scholar
  16. Georgopoulos, P. G., Fedele, P., Shade, P., Lioy, P., Hodgson, M., Longmire, J., et al. (2004). Hospital response to chemical terrorism: Personal protective equipment, training, and operations planning. American Journal of Industrial Medicine, 46, 432–445.CrossRefGoogle Scholar
  17. Georgopoulos, P. G., & Lioy, P. J. (2006). From theoretical aspects of human exposure and dose assessment to computational model implementation: The MOdeling ENvironment for TOtal Risk studies (MENTOR). Journal of Toxicology and Environmental Health B – Critical Reviews, 9, 457–483.CrossRefGoogle Scholar
  18. Georgopoulos, P. G., Walia, A., Roy, A., & Lioy, P. J. (1997). An integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components. Environmental Science and Technology, 31, 17–27.CrossRefGoogle Scholar
  19. Georgopoulos, P. G., Wang, S. W., Lioy, P. J., Georgopoulos, I. G., & Yononne-Lioy, M. J. (2006). Assessment of human exposure to copper: A case study using the NHEXAS database. Journal of Exposure Science and Environmental Epidemiology, 16, 397–409.CrossRefGoogle Scholar
  20. Georgopoulos, P. G., Wang, S. W., Vyas, V. M., Sun, Q., Burke, J., Vedantham, R., et al. (2005a). A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. Journal of Exposure Analysis and Environmental Epidemiology, 15, 439–457.CrossRefGoogle Scholar
  21. Georgopoulos, P. G., Wang, S. W., Yang, Y. C., McCurdy, T., Özkaynak, H., Xue, J., et al. (2007). Biologically-based modeling of multimedia, multipathway, multiroute population exposures to arsenic. Journal of Exposure Science and Environmental Epidemiology (in press).Google Scholar
  22. Georgopoulos, P. G., Wang, S. W., Yang, Y. C., Xue, J., Zartarian, V., McCurdy, T., et al. (2005b). Assessing multimedia/multipathway exposures to arsenic using a mechanistic source-to-dose modeling framework: Case studies employing MENTOR/SHEDS-4M. Prepared for the US Environmental Protection Agency. Technical Report CERM:2005-01. North Carolina: USEPA.Google Scholar
  23. Isukapalli, S., Wang, S. W., Ozkaynak, H., & Georgopoulos, P. G. (2005). Source-to-dose modeling of long-term population exposures to reactive and non-reactive air pollutants: Indoor and outdoor contributions. Paper presented at The 15th Annual ISEA Conference, Tucson, AZ, October 30–November 3.Google Scholar
  24. Jaques, P. A., & Kim, C. S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicology, 12, 715–731.CrossRefGoogle Scholar
  25. Jarvis, N. S., Birchall, A., James, A. C., Bailey, M. R., & Dorrian, M.-D. (1996). LUDEP 2.0 Personal computer program for calculating internal doses using the ICRP Publication 66 respiratory tract model. Richland, WA: National Radiological Protection Board (NRPB-SR287).Google Scholar
  26. NRC (2005). Application of toxicogenomics to cross-species extrapolation. Washington, DC: National Academies.Google Scholar
  27. NUREG (2002). Proceedings of the Environmental Software Systems Compatibility and Linkage Workshop. Rockville, MD: US Nuclear Regulatory Commission (NUREG/CP-0177, PNNL-13654).Google Scholar
  28. Ouyang, M., Welsh, W. J., & Georgopoulos, P. (2004). Gaussian mixture clustering and imputation of microarray data. Bioinformatics, 20, 917–923.CrossRefGoogle Scholar
  29. Price, P. S., & Chaisson, C. F. (2005). A conceptual framework for modeling aggregate and cumulative exposures to chemicals. Journal of Exposure Analysis and Environmental Epidemiology, 15, 473–481.CrossRefGoogle Scholar
  30. Price, P. S., Chaisson, C. F., Koontz, M., Wilkes, C., Ryan, B., Macintosh, D., et al. (2003). Construction of a comprehensive chemical exposure framework using person oriented modeling. San Francisco, CA: The Lifeline Group for The Exposure Technical Implementation Panel, American Chemistry Council (Contract Number 1338).Google Scholar
  31. Schwartz, D., & Collins, F. (2007). Medicine. Environmental biology and human disease. Science, 316, 695–696.CrossRefGoogle Scholar
  32. Slepchenko, B. M., Schaff, J. C., Carson, J. H., & Loew, L. M. (2002). Computational cell biology: Spatiotemporal simulation of cellular events. Annual Review of Biophysics and Biomolecular Structure, 31, 423–441.CrossRefGoogle Scholar
  33. Stallings, C., Tippett, J. A., Glen, G., & Smith, L. (2002). CHAD User’s guide: Extracting human activity information from CHAD on the PC. Prepared for USEPA National Exposure Research Laboratory. Dayton, OH: ManTech Environmental Technologies.Google Scholar
  34. Stenchikov, G., Lahoti, N., Diner, D. J., Kahn, R., Lioy, P. J., & Georgopoulos, P. G. (2006). Multiscale plume transport from the collapse of the World Trade Center on September 11, 2001. Environmental Fluid Mechanics, 6, 425–450.CrossRefGoogle Scholar
  35. Strategy for the EuroPhysiome (STEP) Consortium (2006). First STEP Conference. Available at:
  36. Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., et al. (2003). E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics, 19, 1727–1729.CrossRefGoogle Scholar
  37. The Lifeline Group (2006). Physiological parameters for PBPK modeling version 1.3 (P 3 M). Available at:
  38. Tong, W., Cao, X., Harris, S., Sun, H., Fang, H., Fuscoe, J., et al. (2003). ArrayTrack – supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environmental Health Perspectives, 111, 1819–1826.Google Scholar
  39. UK Environment Agency (2003). Environmental genomics – An introduction. Bristol, UK: UK Environment Agency.Google Scholar
  40. USEPA (2003a). Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) modeling system volume I: Modeling system and science. USEPA National Exposure Research Laboratory. Athens, GA and Research Triangle Park, NC: USEPA (EPA530-D-03-001a).Google Scholar
  41. USEPA (2003b). A Framework for a computational toxicology research program in ORD. Washington, DC: USEPA Office of Research and Development (EPA/600/R-03/065).Google Scholar
  42. USEPA (2004). Potential implications of genomics for regulatory and risk assessment applications at EPA. Washington, DC: US Environmental Protection Agency Science Policy Council (EPA 100/B-04/002).Google Scholar
  43. USEPA (2006). Human health research program multi-year plan (FY 2006–2013). Washington, DC: USEPA Office of Research and Development.Google Scholar
  44. Wang, S. W., Georgopoulos, P. G., Li, G., & Rabitz, H. (2005a). Characterizing uncertainties in human exposure modeling through the Random Sampling-High Dimensional Model Representation (RS-HDMR) methodology. International Journal of Risk Assessment and Management, 5, 387–406.CrossRefGoogle Scholar
  45. Wang, S. W., Isukapalli, S., Sasso, A., Yang, Y. C., Zartarian, V., Xue, J., et al. (2005b). Modeling cumulative and aggregate exposures of co-occurring multimedia contaminants in a probabilistic source-to-dose framework. Paper presented at The 15th Annual ISEA Conference, Tucson, AZ, November.Google Scholar
  46. Waters, M., Boorman, G., Bushel, P., Cunningham, M., Irwin, R., Merrick, A., et al. (2003). Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. Environmental Health Perspectives, 111, 811–824.Google Scholar
  47. WHO (2005). Harmonization project document no. 3 – Principles of characterizing and applying human exposure models. Geneva, Switzerland: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Computational Chemodynamics Laboratory (CCL), Environmental and Occupational Health Sciences Institute (EOHSI)UMDNJ Robert Wood Johnson Medical School and Rutgers UniversityPiscatawayUSA

Personalised recommendations