Advertisement

Water, Air, & Soil Pollution: Focus

, Volume 7, Issue 1–3, pp 331–338 | Cite as

A Novel Environmental Quality Criterion for Acidification in Swedish Lakes – An Application of Studies on the Relationship Between Biota and Water Chemistry

  • Jens Fölster
  • Cecilia Andrén
  • Kevin Bishop
  • Ishi Buffam
  • Neil Cory
  • Willem Goedkoop
  • Kerstin Holmgren
  • Richard Johnson
  • Hjalmar Laudon
  • Anders Wilander
Article

Abstract

The recovery from acidification has led to the demand for more precise criteria for classification of acidification. The Swedish Environmental Protection Agency has revised Sweden’s Ecological Quality Criteria for acidification to improve the correlation between the chemical acidification criteria and biological effects. This paper summarises the most relevant findings from several of the studies commissioned for this revision. The studies included data on water chemistry in 74 reference lakes in southern Sweden with data on fish in 61 of the lakes, as well as data on littoral fauna in 48 lakes. We found that the acidity variable most strongly correlated to the biota was the median pH from the current year. Our results probably do not reflect the mechanisms behind the negative effects of acidity on the biota, but are fully relevant for evaluation of monitoring data. The biogeochemical models used for predicting acidification reference conditions generate a pre-industrial buffering capacity. In order to get an ecologically more relevant criteria for acidification based on pH, we transferred the estimated change in buffering capacity into a corresponding change in pH. A change of 0.4 units was defined as the threshold for acidification. With this criterion a considerably lower number of Swedish lakes were classified as acidified when compared with the present Ecological Quality Criteria.

Keywords

fish monitoring littoral fauna water chemistry 

Notes

Acknowledgements

This report is based on data from monitoring programs funded by the Swedish Environmental Protection Agency.

References

  1. Andersson, H. C., Appelberg, M., & Wilander, A. (2001). Gränsvärden för försurning ur svenska fiskars perspektiv. (Engl. summary: Critical chemical values based on Swedish condition). In: Sötvatten. Årsskrift för miljöövervakningen 2001. ISBN 91-620-5149-0, 24–27.Google Scholar
  2. Andrén, C. (1995). Aluminium speciation; effects of sample storage. Water, Air and Soil Pollution, 85, 811–816.CrossRefGoogle Scholar
  3. Baker, J. P., VanSickle, J., Gagen, C. J., DeWalle, D. R., Sharpe, W. E., Carline, R. F., et al. (1996). Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecological Applications, 6, 422–437.CrossRefGoogle Scholar
  4. Bernes, C. (1991). Acidification and liming of Swedish freshwaters. ISBN 91-620-1109-X. Swedish Environmental Protection Agency, Solna.Google Scholar
  5. Clair, T. A., Ehrman, J. M., Ouellet, A. J., Brun, G., Lockerbie, D., & Ro, C. U. (2002). Changes in freshwater acidification trends in Canada’s Atlantic Provinces: 1983–1997. Water, Air and Soil Pollution, 135, 335–354.CrossRefGoogle Scholar
  6. Cory, N., & Andrén, C. (2004). Modelling of aluminium speciation as a complement to laboratory-based analysis. Uppsala, Dep. of Environ. Assess., Swedish University of Agricultural Sciences. Report 2004:12. ISSN 1403–977X.Google Scholar
  7. Cronan, C. S., & Schofield, C. L. (1979). Aluminium leaching response to acid precipitation: Effects on high-elevation watersheds in the northeast. Science, 204, 304–306.CrossRefGoogle Scholar
  8. Driscoll, C. T. (1984). A procedure for the fractionation of aqueous aluminium in dilute acidic water. International Journal of Environmental Analytical Chemistry, 16, 267–284.Google Scholar
  9. Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55–71.CrossRefGoogle Scholar
  10. Exley, C., Chappell, J. S., & Birchall, J. D. (1991). A mechanism for acute aluminum toxicity in fish. Journal of Theoretical Biology, 151, 417–428.CrossRefGoogle Scholar
  11. Henriksen, A., Kämäri, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface water. Ambio, 21, 356–363.Google Scholar
  12. Holmgren, K., & Buffam, I. (2005). Critical values of different acidity indices – as shown by fish communities in Swedish lakes. Verhandlungen der Internationalen Verieinigung fur Theoretische and Angewandte Limnologie, 29, 654–660.Google Scholar
  13. Johnson, R. K. (1999). Regional representativeness of Swedish reference lakes. Environment and Man, 23, 115–124.Google Scholar
  14. Johnson, R. K., Goedkoop, W., & Wilander, A. (2004). Relationships between macroinvertebrate communities of stony littoral habitats and water chemistry variables indicative of acid-stress. Report 2004:6, pp. 35, Dep. of Environ. Assess., Swedish Univ. of Agr. Sci.Google Scholar
  15. Köhler, S., Laudon, H., Wilander, A., & Bishop, K. (2000). Estimating organic acid dissociation in natural surface waters using total alkalinity and TOC. Water Research, 34, 1425–1434.CrossRefGoogle Scholar
  16. Laudon, H., Poleo, A. B. S., Vollestad, L. A., & Bishop, K. (2005). Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality. Environmental Pollution, 135, 121–130.CrossRefGoogle Scholar
  17. Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Science of the Total Environment, 177, 173.CrossRefGoogle Scholar
  18. Lydersen, E., Larssen, T., & Fjeld, E. (2004). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment, 326(1–3), 63–69.CrossRefGoogle Scholar
  19. McCormick, J. H., & Leino, R. L. (1999). Factors contributing to first-year recruitment failure of fishes in acidified waters with some implications for environmental research. Transactions of the American Fisheries Society, 128, 265–277.CrossRefGoogle Scholar
  20. Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel, P., et al. (2003). Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos, 100, 380–386.CrossRefGoogle Scholar
  21. Rapp, L. (1998). Critical loads for surface waters: Validation and challenges. Licentiate Thesis, pp. 23, Swedish University of Agricultural Sciences, Umeå.Google Scholar
  22. Swedish Environmental Protection Agency (2000). Environmental quality criteria – lakes and watercourses. Report 5050. ISBN 91-620-5050-8. Kalmar.Google Scholar
  23. Tipping, E., Berggren, D., Mulder, J., & Woof, C. (1995). Modeling the solid-solution distributions of protons, aluminum, base cations and humic substances in acid soils. European Journal of Soil Science, 46, 77–79.CrossRefGoogle Scholar
  24. Wilander, A., Johnson, R. K., & Goedkoop, W. (2003). Riksinventering 2000, Institutionen för Miljöanalys, SLU. Rapport 2003:1. ISSN 1403-977X.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jens Fölster
    • 1
  • Cecilia Andrén
    • 2
  • Kevin Bishop
    • 1
  • Ishi Buffam
    • 3
  • Neil Cory
    • 4
  • Willem Goedkoop
    • 1
  • Kerstin Holmgren
    • 5
  • Richard Johnson
    • 1
  • Hjalmar Laudon
    • 6
  • Anders Wilander
    • 1
  1. 1.Department of Environmental AssessmentSLUUppsalaSweden
  2. 2.Department of Applied Environmental ScienceStockholm University, ITMStockholmSweden
  3. 3.Department of Forest EcologySLUUmeåSweden
  4. 4.Forest Resource Management and GeomaticsSLUUmeåSweden
  5. 5.National Board of FisheriesDrottningholmSweden
  6. 6.Department of Ecology and Environmental SciencesUmeå UniversityUmeåSweden

Personalised recommendations