Water, Air, & Soil Pollution: Focus

, Volume 4, Issue 6, pp 61–66 | Cite as

The Release of Nitrous Oxide from the Intertidal Zones of Two European Estuaries in Response to Increased Ammonium and Nitrate Loading

  • C. Kenny
  • S. Yamulki
  • M. Blackwell
  • E. Maltby
  • P. French
  • F. Birgand
Article

Abstract

Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 μmol N2O m−2 day−1 and 2518 μmol N2 m−2 day−1, respectively, from the Couesnon and 109 μmol N2O m−2 day−1 and 303 μmol N2 m−2 day−1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.

Keywords

estuarine intertidal zones nitrous oxide evolution nutrient inputs tidal simulation chambers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmus, R. M., Jensen, M. H., Jensen, K. M., Kristensen, E., Asmus, H. and Wille, A.: 1998, ‘The Role of Water Movement and Spatial Scaling for Measurement of Dissolved Inorganic Nitrogen Fluxes in Intertidal Sediments’, Est. Coast Shelf Sci. 46, 221–232.Google Scholar
  2. Billen, G., Somville, M., de Becker, E. and Servais, P.: 1985, ‘A Nitrogen Budget of the Scheldt Hydrographical Basin’, Neth. J. Sea Res. 19, 223–230.Google Scholar
  3. Bouwman, A. F.: 1993, ‘The global source distribution of N2O’, in V. Amstel (ed.), Methane and Nitrous Oxide. Methods in National Emissions Inventories and Options for Control, IPPC, National Institute for Public Health and Environmental Protection, Bilthoven, The Netherlands, pp. 261–277.Google Scholar
  4. Bruchon, F., Mortreux, F., Rombaut, J., Falala, J., Lefèvre, J. C., Rivoal, J.-L., Jacquet, A., Faytre, I. and Michel, P.: 2000, ‘Etude préalable à la mise en place d’un outil d’aide à la gestion globale de l’eau sur les bassins versants’.Google Scholar
  5. Butler, J. H., Elkins, J. W., Thompson, T. M. and Egan, K. B.: 1989, ‘Tropospheric and dissolved N2O of the West Pacific and East Indian Oceans during El Ni no-southern Oscillation Event of 1987’, J. Geophys. Res. 94, 865–877.Google Scholar
  6. Cicerone, R. J.: 1987, ‘Changes in stratospheric ozone’, Science 237, 35–41.Google Scholar
  7. Commission Interbassins Baie du Mont-Saint-Michel, Agence de l’Eau Seine-Normandie, et Loire-Bretagne, BCEOM.Google Scholar
  8. Crutzen, P. J. and Graedel, T. E.: 1993, Atmospheric Change: An Earth System Perspective, W.H. Freeman & Company, New York.Google Scholar
  9. Environment Agency: 1999, River Torridge and Hartland Streams Action Plan, September 1999–2004, (LEAP) Local Environment Agency Plan, Exminster, EA, p. 75.Google Scholar
  10. Garrido, F., Hénault, C., Gaillard, H. and Germon, J. C.: 2000, ‘Inhibitory Capacities of Acetylene on Nitrification in Two Agricultural Soils’, Soil Biol. Biochem. 32, 1799–1802.Google Scholar
  11. Hahn, J. and Junge, C.: 1977, ‘Atmospheric N2O: A critical review’, Z. Naturforsch. 32, 190–214.Google Scholar
  12. Houghton, J. T., Meiro Filho, L. G., Callendar, B. A., Harris, N., Kattenberg, A. and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change, IPCC.Google Scholar
  13. Lefèvre, J. C., Bertru, G., Burel, F., Brient, L., Créach, V., Gueuné, Y., Levasseur, J., Mariotti, A., Radureau, A., Retière, C., Savouré, B. and Troccaz, O.: 1994, ‘Comparative Studies on Salt Marsh Processes: Mont-Saint-Michel Bay’, in J.C. Lefeuvre (ed.), Tidal Exchanges: Import–Export of Organic Matter, Elsevier Science, pp. 215–234.Google Scholar
  14. Letey, J., Valoras, N., Focht, D. D. and Ryden, J. C.: 1981, ‘N2O production and reduction during denitrification as affected by Redox Potential’, Soil Sci. Soc. Am. J. 45, 727–730.Google Scholar
  15. McLusky, D. S.: 1996, The Estuarine Ecosystem, 2nd edn., Blakie A & P, Glasgow.Google Scholar
  16. Smith, C. J. and Patrick, W. H.: 1983, ‘N2O emissions as Affected by Alternate Anaerobic and Aerobic Conditions from Soil Suspensions Enriched with Ammonium Sulphate’, Soil Biol. Biochem. 15, 693–697.Google Scholar
  17. Yoshinari, T.: 1990, ‘Emissions of N2O from various Environments – The Use of Stable Isotope Composition of N2O as a Tracer for the Studies of N2O Biogeochemical Cycling’, in N.P.S. Revsbech and J. Sorensen (eds.), Denitrification in Soil and Sediment, Plenum Press, New York, pp. 129–150.Google Scholar
  18. Yoshinari, T. and Knowles, R.: 1976, ‘Acetylene inhibition of N2O reduction by denitrifying bacteria’, Biochem. Biophys. Res. Comm. 69, 705–710.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Kenny
    • 1
  • S. Yamulki
    • 1
  • M. Blackwell
    • 2
  • E. Maltby
    • 2
  • P. French
    • 3
  • F. Birgand
    • 4
  1. 1.Institute of Grassland and Environmental ResearchOkehamptonU.K.
  2. 2.Royal Holloway Institute for Environmental ResearchVirginia WaterU.K.
  3. 3.Department of GeographyRoyal Holloway University of LondonEghamU.K.
  4. 4.CemagrefRennesFrance

Personalised recommendations