A Heterogeneous Multi-Core Based Biomedical Application Processing System and Programming Toolkit

  • Tassadaq Hussain
  • Amna Haider
  • Abdelmalik Taleb-Ahmed


Due to the growth of biological databases and biomedical instruments, the high performance active (real-time) signal processing becomes a challenge for medical scientists and engineers. The medical applications require a high-performance signal processor which can process the scientific and engineering biomedical applications and is easy to program. In this article, we have suggested a biomedical sensor interface and heterogeneous multi-core processing architecture based biomedical application processing system (BAPS) and biomedical applications toolkit. The biomedical sensor interface supports multiple regular and complex medical signals and provides digital data to the processing system. The BAPS uses heterogeneous multi-core architecture that processes biomedical applications with the performance up to 10 billion operations per sec and accuracy of 1 μ sec. The biomedical application toolkit provides programmability by giving support of hardware-level, scientific and artificial intelligence programming. The BAPS provides a single embedded platform solution to process a wide range of biomedical signal and image processing applications. To prove the importance of the proposed system, we developed the BAPS hardware architecture and tested it with different biomedical applications. When compared the results of BAPS with the baseline system, the results show that BAPS improves active (real-time) applications performance up to 12.8 times and processes passive (non-real-time) application 7.4 times faster and improves the 4.84-time performance of artificial intelligence application. While comparing the power and energy, the BAPS draws 1.56 times less dynamic power and consumes 21.85 times less energy.


FPGA Multi-core Embedded system HPC Parallel programming Biomedical 



The research leading to these results has received funding from the Higher Education Commission Pakistan under NRPU 2017-18. The authors would like to thank Unal Color of Education Research and Development (UCERD) Private Limited Islamabad for the support.


  1. 1.
    Addison, P.S. (2007). James Nicholas Watson. Method of analysis of medical signals, January 30 US Patent 7, 171, 269.Google Scholar
  2. 2.
    Rangayyan, R.M. (2015). Biomedical signal analysis Vol. 33. New York: Wiley.CrossRefGoogle Scholar
  3. 3.
    Tsuruoka, Y., Tamura, Y., Minakuchi, S., Tsuruoka, M. (2001). Time series analysis of bio-medical signals. In 2001. CBMS 2001. Proceedings. 14th IEEE Symposium on Computer-Based Medical Systems (pp. 97–102): IEEE.Google Scholar
  4. 4.
    Wózniak, M., Połap, D., Nowicki, R.K., Napoli, C., Pappalardo, G., Tramontana, E. (2015). Novel approach toward medical signals classifier. In 2015 International Joint Conference on Neural Networks (IJCNN), (pp. 1–7): IEEE.Google Scholar
  5. 5.
    Dey, N. (2016). Classification and clustering in biomedical signal processing. IGI Global.Google Scholar
  6. 6.
    Peng, Y., Wu, Z., Jiang, J. (2010). A novel feature selection approach for biomedical data classification. Journal of Biomedical Informatics, 43(1), 15–23.CrossRefGoogle Scholar
  7. 7.
    Pal, K., Mitra, K., Bit, A., Bhattacharyya, S., Dey, A. (2018). Medical signal processing in biomedical and clinical applications. Journal of Healthcare Engineering, 2018.Google Scholar
  8. 8.
    Chang, H.-H., & Moura, J.M.F. (2010). Biomedical signal processing. Biomedical engineering and design handbook, 2, 559–579.Google Scholar
  9. 9.
    Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine, 4(2), 4–22.CrossRefGoogle Scholar
  10. 10.
    Ting, D.S.W., Liu, Y., Burlina, P., Xu, X., Bressler, N.M., Wong, T.Y. (2018). Ai for medical imaging goes deep. Nature Medicine, 24(5), 539.CrossRefGoogle Scholar
  11. 11.
    Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C.S., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131.CrossRefGoogle Scholar
  12. 12.
    Anderson, P.J., Jessen, R.A., Linde, D.R., Jones, R.E., Walter, B., Christenson, P.E. (1994). Medical diagnostic system, US Patent 5,279,294.Google Scholar
  13. 13.
    Kuo, S.M., Lee, B.H., Tian, W. (2013). Real-time digital signal processing: fundamentals, implementations and applications. New York: Wiley.Google Scholar
  14. 14.
    Phyu, M.W., Zheng, Y., Zhao, B., Xin, L., Wang, Y.S. (2009). A real-time ecg qrs detection asic based on wavelet multiscale analysis. In 2009. a-SSCC 2009, IEEE Asian Solid-State Circuits Conference (pp. 293–296): IEEE.Google Scholar
  15. 15.
    Guyatt, G., Rennie, D, Meade, M., Cook, D., et al. (2002). Users’ guides to the medical literature: a manual for evidence-based clinical practice Vol. 706. Chicago: AMA Press.Google Scholar
  16. 16.
    Cuttini, M., Nadai, M., Kaminski, M., Hansen, G., de Leeuw, R., Lenoir, S., Persson, J., Rebagliato, M., Reid, M., de Vonderweid, U., et al. (2000). End-of-life decisions in neonatal intensive care: physicians’ self-reported practices in seven european countries. The Lancet, 355(9221), 2112–2118.CrossRefGoogle Scholar
  17. 17.
    Wigton, R.S. (1988). Use of linear models to analyze physicians’ decisions. Medical Decision Making, 8(4), 241–252.CrossRefGoogle Scholar
  18. 18.
    Azhar, S., Hassali, M.A., Ibrahim, M.I.M., Ahmad, M., Masood, I., Shafie, A.A. (2009). The role of pharmacists in developing countries: the current scenario in pakistan. Human Resources for Health, 7(1), 1.CrossRefGoogle Scholar
  19. 19.
    Niu, S., Jia, Y., Wang, W., He, R., Hu, L., Liu, Y. (2013). Electricity consumption and human development level: A comparative analysis based on panel data for 50 countries. International Journal of Electrical Power & Energy Systems, 53, 338–347.CrossRefGoogle Scholar
  20. 20.
    Sorel, Y. (1994). Massively parallel computing systems with real time constraints: the” algorithm architecture adequation” methodology. In 1994., Proceedings of the First International Conference on Massively Parallel Computing Systems (pp. 44–53): IEEE.Google Scholar
  21. 21.
    Amato, F., Cannataro, M., Cosentino, C., Garozzo, A., Lombardo, N., Manfredi, C., Montefusco, F., Tradigo, G., Veltri, P. (2009). Early detection of voice diseases via a web-based system. Biomedical Signal Processing and Control, 4(3), 206–211.CrossRefGoogle Scholar
  22. 22.
    Ju, Z., Lin, G., Wu, L., Wang, C., Cheng, Y. (2015). Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomedical Signal Processing and Control, 18, 1–10.CrossRefGoogle Scholar
  23. 23.
    Winterstein, F., Bayliss, S., Constantinides, G.A. (2013). High-level synthesis of dynamic data structures: A case study using vivado hls. In 2013 International Conference on Field-Programmable Technology (FPT) (pp. 362–365): IEEE.Google Scholar
  24. 24.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675–678): ACM.Google Scholar
  25. 25.
    Sutton, J., Mahajan, R., Akbilgic, O., Kamaleswaran, R. (2018), Physonline: An online feature extraction and machine learning pipeline for real-time analysis of streaming physiological data. IEEE Journal of Biomedical and Health Informatics.Google Scholar
  26. 26.
    Park, D.Y., Joe, D.J., Kim, D.H., Park, H., Han, J.H., Jeong, C.K., Park, H., Park, J.G., Joung, B., Lee, K.J. (2017). Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Advanced Materials, 29(37), 1702308.CrossRefGoogle Scholar
  27. 27.
    Shrivastwa, R.R., Pudi, V., Chattopadhyay, A. (2018). An fpga-based brain computer interfacing using compressive sensing and machine learning. In 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) An fpga-based brain computer interfacing using compressive (pp. 726–731): IEEE.Google Scholar
  28. 28.
    Anliker, U., Ward, J.A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., Schenker, E.B., Catarsi, F., Coluccini, L., et al. (2004). Amon: a wearable multiparameter medical monitoring and alert system. IEEE Transactions on information technology in Biomedicine, 8(4), 415–427.CrossRefGoogle Scholar
  29. 29.
    Moreno, R.J., & Arenas, J.O.P. (2018). Development of an electronic system for the control, monitoring and follow-up of patients with neurodegenerative diseases through biomedical signal processing. International Journal of Applied Engineering Research, 13(11), 10011–10026.Google Scholar
  30. 30.
    Liou, S.-W., Kurniadi, D., Zheng, B.-R., Xie, W.-Q., Tien, C.-J., Jong, G.-J. (2018). Classification of biomedical signal on iot platform using support vector machine. In 2018 IEEE International Conference on Applied System Invention (ICASI) (pp. 50–53): IEEE.Google Scholar
  31. 31.
    Vivanco, R., Demko, A.B., Jarmasz, M., Somorjai, R.J., Pizzi, N.J. (2007). A pattern recognition application framework for biomedical datasets. Engineering in Medicine and Biology Magazine, IEEE, 26(2), 82–85.CrossRefGoogle Scholar
  32. 32.
    Wolf, I., Vetter, M., Wegner, I., Nolden, M., Bottger, T., Hastenteufel, M., Schobinger, M., Kunert, T., Meinzer, H.-P. (2004). The medical imaging interaction toolkit (mitk): a toolkit facilitating the creation of interactive software by extending vtk and itk. In Medical Imaging 2004 (pp. 16–27): International Society for Optics and Photonics.Google Scholar
  33. 33.
    Lohman, B., Boric-Lubecke, O., Lubecke, V.M., Ong, P.W., Sondhi, M.M. (2002). A digital signal processor for doppler radar sensing of vital signs. Engineering in Medicine and Biology Magazine, IEEE, 21(5), 161–164.CrossRefGoogle Scholar
  34. 34.
    Colominas, M.A., Schlotthauer, G., Torres, M.E. (2014). Improved complete ensemble emd: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29.CrossRefGoogle Scholar
  35. 35.
    Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F. (2006). Techniques of emg signal analysis: detection, processing, classification and applications. Biological Procedures Online, 8(1), 11–35.CrossRefGoogle Scholar
  36. 36.
    Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E. (2007). A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32.CrossRefGoogle Scholar
  37. 37.
    Acharya, R.U., Molinari, F., Vinitha Sree, S., Chattopadhyay, S., Ng, K.-H., Suri, J.S. (2012). Automated diagnosis of epileptic eeg using entropies. Biomedical Signal Processing and Control, 7(4), 401–408.CrossRefGoogle Scholar
  38. 38.
    Hussain, T., Palomar, O., Cristal, A., Unsal, O., Ayguady, E., Valero, M. (2014). Advanced Pattern based Memory Controller for FPGA based Applications. In International Conference on High Performance Computing & Simulation (pp. 8): ACM, IEEE.Google Scholar
  39. 39.
    Hussain, T., & et al. PPMC: A Programmable Pattern based Memory Controller. In ARC 2012.Google Scholar
  40. 40.
    Epiphany Architecture Reference. (2014). Adapteva, REV 14.03.11.Google Scholar
  41. 41.
    Buyukkurt, B., & Najj, W.A. (2008). Compiler generated systolic arrays for wavefront algorithm acceleration on fpgas. In 2008. FPL 2008. International Conference on Field Programmable Logic and Applications (pp. 655–658): IEEE.Google Scholar
  42. 42.
    Buttazzo, G.C. (2011). Hard real-time computing systems: predictable scheduling algorithms and applications Vol. 24. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  43. 43.
    Liu, C.L., & Layland, J.W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM (JACM), 20(1), 46–61.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Stonebraker, M., Ċetintemel, U., Zdonik, Stan. (2005). The 8 requirements of real-time stream processing. ACM Sigmod Record, 34(4), 42–47.CrossRefGoogle Scholar
  45. 45.
    Locke, C.D. (1992). Software architecture for hard real-time applications: Cyclic executives vs. fixed priority executives. Real-Time Systems, 4(1), 37–53.CrossRefGoogle Scholar
  46. 46.
    Mashima, J., Kodama, Y., Fujisawa, T., Katayama, T., Okuda, Y., Kaminuma, E., Ogasawara, O., Okubo, K., Nakamura, Y., Takagi, T. (2016). Dna data bank of Japan Nucleic acids research page gkw1001.Google Scholar
  47. 47.
    CASIA-Iris: CASIA Iris Image Database. (2016). Institute Of automation chinese academy.Google Scholar
  48. 48.
    Iridology Research Group. (2017). UCERD.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tassadaq Hussain
    • 1
    • 2
  • Amna Haider
    • 1
    • 2
  • Abdelmalik Taleb-Ahmed
    • 3
    • 4
  1. 1.Riphah International UniversityIslamabadPakistan
  2. 2.UCERDIslamabadPakistan
  3. 3.Laboratory of Industrial and Human AutomationMechanics and Computer ScienceFamarsFrance
  4. 4.Université de Valenciennes et du Hainaut Cambrésis Bat MalvacheFamarsFrance

Personalised recommendations