Advertisement

An Accelerator for Resolution Proof Checking based on FPGA and Hybrid Memory Cube Technology

  • Tim Hansmeier
  • Marco Platzner
  • Md Jubaer Hossain Pantho
  • David Andrews
Article
  • 8 Downloads

Abstract

Modern Boolean satisfiability solvers can emit proofs of unsatisfiability. There is substantial interest in being able to verify such proofs and also in using them for further computations. In this paper, we present an FPGA accelerator for checking resolution proofs, a popular proof format. Our accelerator exploits parallelism at the low level by implementing the basic resolution step in hardware, and at the high level by instantiating a number of parallel modules for proof checking. Since proof checking involves highly irregular memory accesses, we employ Hybrid Memory Cube technology for accelerator memory. The results show that while the accelerator is scalable and achieves speedups for all benchmark proofs, performance improvements are currently limited by the overhead of transitioning the proof into the accelerator memory.

Keywords

Resolution proof checking Accelerator FPGA Hybrid Memory Cube 

Notes

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

References

  1. 1.
    Babb, J., Frank, M., Agarwal, A. (1996). Solving graph problems with dynamic computation structures. In Proceedings of SPIE: High-Speed Computing, Digital Signal Processing, and Filtering Using Reconfigurable Logic, vol. 2914, pp. 225–236.Google Scholar
  2. 2.
    Biere, A. (2008). Picosat essentials. Journal on Satisfiability Boolean Modeling and Computation (JSAT), 4, 75–97.zbMATHGoogle Scholar
  3. 3.
    Boyd, M., & Larrabee, T. (2000). A scalable, loadable custom programmable logic device for solving boolean satisfiability problems. In Proceedings of the 8th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).Google Scholar
  4. 4.
    Chatterjee, S., Mishchenko, A., Brayton, R., Kuehlmann, A. (2007). On resolution proofs for combinational equivalence. In 2007 44Th ACM/IEEE design automation conference, pp. 600–605.Google Scholar
  5. 5.
    Cook, S.A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC ’71 (pp. 151–158). New York: ACM.Google Scholar
  6. 6.
    Dai, D., Huang, T., Chi, Y., Xu, N., Wang, Y., Yang, H. (2017). Foregraph: Exploring large-scale graph processing on multi-fpga architecture. In Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA). ACM.Google Scholar
  7. 7.
    Davis, M., Logemann, G., Loveland, D. (1962). A machine program for theorem proving. Communications of the ACM, 5(7), 394–397.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM, 7 (3), 201–216.MathSciNetCrossRefGoogle Scholar
  9. 9.
    deLorimier, M., Kapre, N., ad Mehta, N., Rizzo, D., Eslick, I., Rubin, R., Uribe, T., Knight, T. Jr., DeHon, A. (2006). Graphstep: a system architecture for sparse-graph algorithms. In Proceedings of the 14th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).Google Scholar
  10. 10.
    Drzevitzky, S., Kastens, U., Platzner, M. (2010). Proof-carrying hardware: Concept and prototype tool flow for online verification. International Journal of Reconfigurable Computing, 2010, 11.CrossRefGoogle Scholar
  11. 11.
    Hamadi, Y., & Merceron, D. (1997). Reconfigurable architectures: a new vision for optimization problems. In Proceedings of the 3rd International Conference on Principles and Practice of Constraint Programming (CP), Lecture Notes in Computer Science (LNCS), vol. 1330, pp. 209–221. Springer.Google Scholar
  12. 12.
    Heule, M., & Biere, A. (2015). Proofs for satisfiability problems, vol. 55, pp. 1–22 College Publications.Google Scholar
  13. 13.
    (2014). Hybrid Memory Cube Consortium: Hybrid memory cube specification 2.0.Google Scholar
  14. 14.
    Isenberg, T., Platzner, M., Wehrheim, H., Wiersema, T. (2017). Proof-carrying hardware via inductive invariants. ACM Transactions on Design Automation of Electronic Systems, 22(4), 61:1–61:23.CrossRefGoogle Scholar
  15. 15.
    Leong, P., Sham, C., Wong, W., Wong, H., Yuen, W., Leong, M. (2001). A bitstream reconfigurable fpga implementation of the wsat algorithm. IEEE Transactions on VLSI Systems, 9(1), 197–201.CrossRefGoogle Scholar
  16. 16.
    McMillan, K. L. (2003). Interpolation and SAT-based Model Checking, pp. 1–13. Berlin: Springer.zbMATHGoogle Scholar
  17. 17.
    Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., Kim, H. (2017). Graphpim: Enabling instruction-level pim offloading in graph computing frameworks. In 2017 IEEE International symposium on high performance computer architecture (HPCA), pp. 457–468.Google Scholar
  18. 18.
    Pawlowski, J.T. (2011). Hybrid memory cube (hmc). In 2011 IEEE Hot chips 23 symposium (HCS), pp. 1–24.Google Scholar
  19. 19.
    Petraglio, E., Wertenbroek, R., Capitao, F., Guex, N., Iseli, C., Thoma, Y. (2017). Genomic data clustering on fpgas for compression. In S. Wong, A.C. Beck, K. Bertels, L. Carro (Eds.) Applied reconfigurable computing (pp. 229–240). Cham: Springer International Publishing.Google Scholar
  20. 20.
    Platzner, M. (2000). Reconfigurable accelerators for combinatorial problems. IEEE Computer, 33(4), 58–60.CrossRefGoogle Scholar
  21. 21.
    Schmidt, J., Fröning, H., Brüning, U. (2016). Exploring time and energy for complex accesses to a hybrid memory cube. In Proceedings of the Second International Symposium on Memory Systems, MEMSYS ’16, pp. 142-150. New York: ACM.Google Scholar
  22. 22.
    Shiozawa, T., Oguri, K., Nagami, K., Ito, H., Konishi, R., Imlig, N. (1998). A hardware implementation of constraint satisfaction problem based on new reconfigurante lsi architecture. In Proceedings of the 8th International Workshop on Field-Programmable Logic and Applications (FPL), Lecture Notes in Computer Science (LNCS), vol. 1482, pp. 426–430. Springer.Google Scholar
  23. 23.
    Skliarova, I., & de Brito Ferrari, A. (2004). Reconfigurable hardware sat solvers: a survey of systems. IEEE Transactions on Computers, 53(11), 1449–1461.CrossRefGoogle Scholar
  24. 24.
    Skliarova, I. (2002). Ferrari: a sat solver using software and reconfigurable hardware. In Proceedings of the Design, Automation and Test in Europe Conference (DATE).Google Scholar
  25. 25.
    Suyama, T., Yokoo, M., Sawada, H., Nagoya, A. (2001). Solving satisfiability problems using reconfigurable computing. IEEE Transactions on VLSI Systems, 9(1), 109–116.CrossRefGoogle Scholar
  26. 26.
    Vazirani, V. (2001). Approximation algorithms. Berlin: Springer.zbMATHGoogle Scholar
  27. 27.
    Zhang, J., Khoram, S., Li, J. (2017). Boosting the performance of fpga-based graph processor using hybrid memory cube: a case for breadth first search. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’17, pp. 207-216. New York: ACM.Google Scholar
  28. 28.
    Zhong, P., Martonosi, M., Ashar, P., Malik, S. (1999). Using configurable computing to accelerate boolean satisfiability. IEEE Transactions CAD of Integrated Circuits and Systems, 18(6), 861–868.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Paderborn UniversityPaderbornGermany
  2. 2.University of ArkansasFayettevilleUSA

Personalised recommendations