Advertisement

Sign Identifier for the Enhanced Three Moduli Set {2n + k, 2n − 1, 2n+ 1 − 1}

  • Ahmad HiasatEmail author
  • Leonel Sousa
Article
  • 11 Downloads

Abstract

The three-moduli set {2n,2n − 1,2n+ 1 − 1} started to receive more attention lately. This moduli set is considered an arithmetic-friendly set because it avoids the demanding channel (2n + 1) of the traditional 3-moduli set {2n,2n − 1,2n + 1}. This work considers an enhanced form of the above moduli set, {2n + k,2n − 1,2n+ 1 − 1}, and proposes a sign identifier for numbers within the dynamic range of the set. While the published sign identifiers have dealt with the unextended form {2n,2n − 1,2n+ 1 − 1}, this is the first sign identifier that deals with the extended form. Based on VLSI layout synthesis for the case (k = 0), the proposed structure has less or similar area and power requirements, nevertheless, it achieves an improved time performance in the range of (13.0–29.6)% compared with the most recent sign identifiers. When compared with a recently published residue-to-binary converter for the moduli set {2n + k,2n − 1,2n− 1 − 1}, which can function as a converter-based sign identifier, the proposed detector has on average reduced area, time, and power by 175%, 106%, and 60%, respectively.

Keywords

Residue number system Computer arithmetic Digital circuits VLSI design 

Notes

References

  1. 1.
    Soderstrand, M.A., Jenkins, W.K., Jullien, G., Taylor, F. (Eds.) (1986). Residue number system arithmetic: modern applications in digital signal processing. New York: IEEE Press.Google Scholar
  2. 2.
    Mohan, P.V. (2016). Residue number systems: theory and applications. Birkhauser: Switzerland.CrossRefGoogle Scholar
  3. 3.
    Hiasat, A. (2004). A suggestion for a fast residue multiplier for a family of moduli of the form (2n − (2p ± 1)). Computer Journal, 47(1), 93–102.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sousa, L., Antao, A., Martins, P. (2016). Combining residue arithmetic to design efficient cryptographic circuits and systems. IEEE Circuits and Systems Magazine, 16(4), 6–32.CrossRefGoogle Scholar
  5. 5.
    Hiasat, A., & Al-Khateeb, A. (1998). Efficient digital sweep oscillator with extremely low sweep rates. IEE CD&S, 145(6), 409–414.Google Scholar
  6. 6.
    Dutta, C.B., Garai, P., Sinha, A. (2012). Design of a reconfigurable DSP processor with bit efficient residue number system. International Journal of VLSI Design & Commmunication System (VLSICS), 3(5), 175–189.CrossRefGoogle Scholar
  7. 7.
    Wei, J., Guo, W., Liu, H., Tan, Y. (2013). A unified cryptographic processor for RSA and ECC in RNS. In Communications in computer and information science (pp. 19–32). Berlin: Springer.Google Scholar
  8. 8.
    Hiasat, A., & Zohdy, H. (1997). Design and implementation of an RNS division algorithm. In IEEE symposium on computer arithmetic (pp. 240–249).Google Scholar
  9. 9.
    Hiasat, A. (1993). New designs for a sign detector and a residue to binary converter. IET Proceedings - Circuits, Devices and Systems, 140(4), 247–252.CrossRefGoogle Scholar
  10. 10.
    Bi, S., & Gross, W. (2008). The mixed-radix Chinese remainder theorem and its applications to residue comparison. IEEE Transactions on Computers, 57(12), 1624–1632.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tomczak, T. (2008). Fast sign detection for RNS (2n − 1, 2n, 2n + 1). IEEE Transactions on Circuits and Systems I, 55(6), 1502–1511.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pettenghi, H., Chaves, R., Sousa, L. (2004). (2n + 1, 2n + k, 2n − 1): a new RNS moduli set extension. In Proceedings of the EUROMICRO systems on digital system design (DSD’04) (pp. 210–217).Google Scholar
  13. 13.
    Xu, M., Yao, R., Luo, F. (2012). Low-complexity sign detection algorithm for RNS {2n − 1, 2n, 2n + 1}. IEICE Transactions on Electronics, 95(9), 1552–1556.CrossRefGoogle Scholar
  14. 14.
    Kumar, S., & Chang, C.-H. (2016). New fast and area-efficient adder-based sign detector for RNS 2n − 1, 2n, 2n + 1. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(7), 2608–2612.CrossRefGoogle Scholar
  15. 15.
    Sousa, L., & Martins, P. (2016). Sign detection and number comparison on RNS 3-moduli sets {2n − 1, 2n + x, 2n + 1}. Circuits, Systems, and Signal Processing, 36(3), 1224–1246.CrossRefGoogle Scholar
  16. 16.
    Hiasat, A. (2016). A sign detector for a group of three-moduli sets. IEEE Transactions on Computers, 65(12), 3580–3590.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Xu, M., Bian, Z., Yao, R. (2015). Fast sign detection algorithm for the RNS moduli set {2n+ 1 − 1, 2n − 1, 2n}. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(2), 379– 383.CrossRefGoogle Scholar
  18. 18.
    Niras, C.V., & Kong, Y. (2016). Fast sign-detection algorithm for residue number system moduli set {2n − 1, 2n, 2n+ 1 − 1}. IET Computers and Digital Techniques, 10(2), 54–58.CrossRefGoogle Scholar
  19. 19.
    Chang, C.-H., & Kumar, S. (2017). Area-efficient and fast sign detection for four-moduli set RNS (2n − 1, 2n, 2n + 1, 22n + 1). IEEE International Symposium on Circuits and Systems (ISCAS), 1540–1543.Google Scholar
  20. 20.
    Hiasat, A. (2017). A reverse converter and sign detectors for an extended RNS five moduli set. IEEE Transactions on Circuits and Systems TCAS-I, 64(1), 111–121.CrossRefGoogle Scholar
  21. 21.
    Hiasat, A. (2018). A sign detector for the extended four moduli set {2n − 1, 2n, + 1, 22n + 1, 2n + k}. IET Proceedings - Computers and Digital Techniques, 12(2), 39–44.CrossRefGoogle Scholar
  22. 22.
    Kumar, S., Chang, C.-H., Tay, T.F. (2017). New algorithm for signed integer comparison in {2n + k, 2n − 1, 2n + 1, 2n± 1 − 1} and its efficient hardware implementation. IEEE Transactions on Circuits and Systems TCAS-I, 64(6), 1481–1493.CrossRefGoogle Scholar
  23. 23.
    Zimmerman, R. (1999). Efficient VLSI implementation of modulo (2n1) addition and multiplication. In Proceedings of the 14th IEEE symposium on computer arithmetic (pp. 158–167).Google Scholar
  24. 24.
    Piestrak, S., & Berezowski, K. (2008). Design of residue multipliers-accumulators using periodicity. In Proceedings of the IET Irish signals and systems conference (ISSC) (pp. 380–385).Google Scholar
  25. 25.
    Sheu, M.-H., Siao, S.-M., Hwang, Y.-T., Sun, C.-C., Lin, Y.-P. (2016). New adaptable three-moduli {2n + k, 2n,− 1, 2n− 1 − 1} residue number system-based finite impulse response implementation. IEICE Electronics Express, 13, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Engineering DepartmentPrincess Sumaya University for TechnologyAmmanJordan
  2. 2.Department of Electrical and Computer EngineeringInstituto Superior Técnico, Universidade de LisboaLisboaPortugal
  3. 3.Instituto de Engenharia e de Sistemas de Computadores (INESC-ID)LisboaPortugal

Personalised recommendations