Advertisement

3D Tomography Back-Projection Parallelization on Intel FPGAs Using OpenCL

  • Maxime Martelli
  • Nicolas Gac
  • Alain Mérigot
  • Cyrille Enderli
Article
  • 33 Downloads

Abstract

This article deals with the evaluation of FPGAs resurgence for hardware acceleration applied to computed tomography on the back-projection operator used in iterative reconstruction algorithms. We focus our attention on the tools developed by FPGAs manufacturers, in particular the Intel FPGA SDK for OpenCL, that promises a new level of hardware abstraction from the developer’s perspective, allowing a software-like programming of FPGAs. Our first contribution is to propose an accurate memory benchmark. This is followed by an evaluation of different custom OpenCL implementations of the back-projection algorithm. With some clues on memory fetching and coalescing, we then fine-tune designs to improve performance. Finally, a comparison is made with GPU implementations, and a preliminary conclusion is drawn on the future of FPGAs for computed tomography.

Keywords

High-level synthesis FPGA OpenCL Tomography reconstruction GPU 

Notes

References

  1. 1.
  2. 2.
  3. 3.
    Jetson TX2 specifications https://elinux.org/Jetson_TX2.
  4. 4.
  5. 5.
  6. 6.
    The International Technology Roadmap For Semiconductors 2.0. Semiconductor Industry Association (2015).Google Scholar
  7. 7.
    Intel FPGA SDK for OpenCL Best Practices Guide. Intel (2017).Google Scholar
  8. 8.
    Intel FPGA SDK for OpenCL Programming Guide. Intel (2017).Google Scholar
  9. 9.
    Abdelfattah, M.S., Hagiescu, A., Singh, D. (2014). Gzip on a chip: High Performance Lossless Data Compression on FPGAs using openCL. International Workshop on openCL.Google Scholar
  10. 10.
    E.Kinahan, P., & et al. (2004). Emission tomography: the fundamentals of PET and SPECT, chapter Analytic image reconstruction methods. Elsevier Academic Press.Google Scholar
  11. 11.
    Feldkamp, L.A., Davis, L.C., Kress, J.W. (1984). Practical cone-beam algorithm. Journal of the Optical Society of America A, 1(6), 612–619.  https://doi.org/10.1364/JOSAA.1.000612. http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612.CrossRefGoogle Scholar
  12. 12.
    Gac, N., Mancini, S., Desvignes, M., Houzet, D. (2008). High Speed 3D Tomography on CPU, GPU, and FPGA. EURASIP Journal on Embedded Systems.Google Scholar
  13. 13.
    Garcia, P., Compton, K., Schulte, M., Blem, E., Fu, W. (2006). An overview of reconfigurable hardware in embedded systems. EURASIP Journal on Embedded Systems.Google Scholar
  14. 14.
    Geyer, L. L., Schoepf, U. J., Meinel, F. G., Nance, J. W., Bastarrika, G., Leipsic, J. A., Paul, N. S., Rengo, M., Laghi, P. A., Cecco, C.N.D. (2015). State of the Art: Iterative CT Reconstruction Techniques. Journal of Food Processing & Technology.Google Scholar
  15. 15.
    Heigl, B., & Kowarschik, M. (2007). High-speed reconstruction for c-arm computed tomography. In Proceedings of the 9th international meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, pp. 25–28.Google Scholar
  16. 16.
    Iain Goddard, M.T. (2002). High-speed cone-beam reconstruction: an embedded systems approach.  https://doi.org/10.1117/12.466946.
  17. 17.
    Jia, Q., & Zhou, H. (2016). Tuning Stencil Codes in openCL for FPGAs. International Conference Computer Design.Google Scholar
  18. 18.
    Kachelrie, M., Knaup, M., Bockenbach, O. (2007). Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware. Medical Physics, 34(4), 1474–1486.  https://doi.org/10.1118/1.2710328.CrossRefGoogle Scholar
  19. 19.
    Kim, J.K., Fessler, J.A., Zhang, Z. (2012). Forward-projection architecture for fast iterative image reconstruction in x-ray CT. IEEE Transactions on Signal Processing, 60(10), 5508–5518.  https://doi.org/10.1109/TSP.2012.2208636.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leeser, M., & et al. (2005). Parallel-beam backprojection: an FPGA implementation optimized for medical imaging. VLSI SIgnal Processing Systems, 39(3), 295–311.CrossRefGoogle Scholar
  21. 21.
    Lu, H., Cheng, J.H., Han, G., Li, L., Liang, Z. (2001). A 3D distance-weighted Wiener filter for Poisson noise reduction in sinogram space for SPECT imaging. Medical Imaging, Physics of Medical Imaging.Google Scholar
  22. 22.
    Scherl, H., Keck, B., Kowarschik, M., Hornegger, J. (2007). Fast gpu-based ct reconstruction using the common unified device architecture (cuda). In 2007 IEEE Nuclear science symposium conference record, (Vol. 6 pp. 4464–4466).  https://doi.org/10.1109/NSSMIC.2007.4437102.
  23. 23.
    Shagrithaya, K., Kepa, K., Athanas, P. (2013). Enabling Development of openCL Applications on FPGA platforms. Conference on Application-Specific Systems, Architectures and Processors.Google Scholar
  24. 24.
    Thurston, M., Nadrljanski, M.M., et al. Computed tomography - radiology reference article. Radiopedia.Google Scholar
  25. 25.
    Vasilev, S. L., Artemev, A. V., Bakulin, V. N., Yurgenson, S. A. (2016). Testing loaded samples using X-ray computed tomography. Russian Journal of Nondestructive Testing.Google Scholar
  26. 26.
    Vidhya, M., Varadharaju, N., Kennedy, Z. J., Amirtham, D., Jesudas, D. M. (2015). Applications of X-Ray computed tomography in food processing. RSNA.Google Scholar
  27. 27.
    Wang, Z., He, B., Zhang, W., Jiang, S. (2016). A Performance Analysis Framework for Optimizing openCL Applications on FPGAs. IEEE International Symposium on High Performance Computer Architecture (HPCA) pp. 114–125.Google Scholar
  28. 28.
    Wegrzyn, M. (2001). FPGA-Based Logic Controllers for Safety Critical Systems. IFAC Conference on New Technologies for Computer Control.Google Scholar
  29. 29.
    Xu, F., & Mueller, K. (2005). Accelerating popular tomographic reconstruction algorithms on commodity pc graphics hardware. IEEE Transactions on Nuclear Science, 52(3), 654–663. http://cvc.cs.stonybrook.edu/Publications/2005/XM05.CrossRefGoogle Scholar
  30. 30.
    Xu, J., Subramanian, N., Alessio, A., Hauck, S. (2010). Impulse c vs. vhdl for accelerating tomographic reconstruction. In Proceedings of the 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM ’10 (pp. 171–174). Washington: IEEE Computer Society..  https://doi.org/10.1109/FCCM.2010.33

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRSUniversité Paris Sudrue Joliot CurieFrance
  2. 2.Laboratoire des Systèmes et Applications des Technologies de l’Information et de l’Énergie, ENS Paris Saclay, CNRS, Université Paris SudUniversité Paris-SaclayCachanFrance
  3. 3.Thales Systèmes Aéroportés S.A.ElancourtFrance

Personalised recommendations