Advertisement

Journal of Signal Processing Systems

, Volume 91, Issue 2, pp 147–161 | Cite as

Gait Verification System Through Multiperson Signature Matching for Unobtrusive Biometric Authentication

  • Ebenezer R. H. P. IsaacEmail author
  • Susan Elias
  • Srinivasan Rajagopalan
  • K. S. Easwarakumar
Article
  • 112 Downloads

Abstract

The unobtrusive nature of gait facilitates the development of optimal biometric authentication systems. Recent approaches on video-analytic gait authentication show excellent results but their implementations are threshold-based which trade off a set amount of FAR (false acceptance rate) to produce an acceptable FRR (false rejection rate). The proposed multiperson signature mapping (MSM) approach overcomes this drawback with a design that substantially decreases the FAR of the authentication system without having to increase the FRR. This technique removes the need of an empirically adjusted threshold. The state-of-the-art algorithms mostly prefer the nearest neighbor (NN) classifier where the Euclidean distance calculated from the extracted feature hyperplane is taken as the similarity measure. Our study proves that the Bayes’ rule applied over the extracted feature set provides a much better performance compared to the conventional NN approach. The MSM is applied on top of template-based gait recognition algorithms to produce an efficient gait authentication system. The method is evaluated on four different gait templates including the popular Gait Energy Image (GEI) and its variation with the genetic template segmentation (GTS). The study analyzes the performance across different clothing and carrying conditions. The deployment of the gait authentication system for practical application is explained in detail. Experimental results with the CASIA-B gait database depict the potential of our proposed approach.

Keywords

Biometrics Gait recognition Gait energy image Linear discriminant analysis Multivariate gaussian Bayes’ rule 

Notes

Acknowledgments

This work is supported by the Visvesvaraya PhD Scheme for Electronics and IT.

References

  1. 1.
    Dupuis, Y., Savatier, X., Vasseur, P. (2013). Feature subset selection applied to model-free gait recognition. Image and vision computing, 31(8), 580–591.CrossRefGoogle Scholar
  2. 2.
    Liang, Y., Li, C.T., Guan, Y., Hu, Y. (2016). Gait recognition based on the golden ratio. EURASIP Journal on Image and Video Processing, 2016(1), 22.CrossRefGoogle Scholar
  3. 3.
    Chattopadhyay, P., Sural, S., Mukherjee, J. (2015). Frontal gait recognition from occluded scenes. Pattern Recognition Letters, 63, 9–15.CrossRefGoogle Scholar
  4. 4.
    Marín-Jiménez, M.J., Castro, F.M., Carmona-Poyato, Á., Guil, N. (2015). On how to improve tracklet-based gait recognition systems. Pattern Recognition Letters, 68, 103–110.CrossRefGoogle Scholar
  5. 5.
    Ntantogian, C., Malliaros, S., Xenakis, C. (2015). Gaithashing: a two-factor authentication scheme based on gait features. Computers & Security, 52, 17–32.CrossRefGoogle Scholar
  6. 6.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W. (2005). The HumanID gait challenge problem: data sets, performance, and analysis. IEEE transactions on pattern analysis and machine intelligence, 27(2), 162–177.CrossRefGoogle Scholar
  7. 7.
    Moustakas, K., Tzovaras, D., Stavropoulos, G. (2010). Gait recognition using geometric features and soft biometrics. IEEE Signal Processing Letters, 17(4), 367–370.CrossRefGoogle Scholar
  8. 8.
    Medikonda, J., Madasu, H., Panigrahi, B. (2016). Information set based gait authentication system. Neurocomputing, 207, 1–14.CrossRefGoogle Scholar
  9. 9.
    Han, J., & Bhanu, B. (2006). Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316–322.CrossRefGoogle Scholar
  10. 10.
    Zhang, E., Zhao, Y., Xiong, W. (2010). Active energy image plus 2dlpp for gait recognition. Signal Processing, 90(7), 2295–2302.zbMATHCrossRefGoogle Scholar
  11. 11.
    Bashir, K., Xiang, T., Gong, S. (2010). Gait recognition without subject cooperation. Pattern Recognition Letters, 31(13), 2052–2060.CrossRefGoogle Scholar
  12. 12.
    Choudhury, S.D., & Tjahjadi, T. (2015). Robust view-invariant multiscale gait recognition. Pattern Recognition, 48(3), 798–811.CrossRefGoogle Scholar
  13. 13.
    Rida, I., Jiang, X., Marcialis, G.L. (2016). Human body part selection by group lasso of motion for model-free gait recognition. IEEE Signal Processing Letters, 23(1), 154–158.CrossRefGoogle Scholar
  14. 14.
    Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine learning, 1st edn. Boston: Addison-Wesley Longman Publishing Co., Inc.zbMATHGoogle Scholar
  15. 15.
    Isaac, E., Elias, S., Rajagopalan, S., Easwarakumar, K.S. (2017). View-invariant gait recognition through genetic template segmentation. IEEE Signal Processing Letters, 24(8), 1188–1192.CrossRefGoogle Scholar
  16. 16.
    Arora, P., Hanmandlu, M., Srivastava, S. (2015). Gait based authentication using gait information image features. Pattern Recognition Letters, 68, 336–342.CrossRefGoogle Scholar
  17. 17.
    Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D. (2006). Gait recognition using linear time normalization. Pattern Recognition, 39(5), 969–979.zbMATHCrossRefGoogle Scholar
  18. 18.
    Matovski, D.S., Nixon, M.S., Mahmoodi, S., Carter, J.N. (2012). The effect of time on gait recognition performance. IEEE Transactions on Information Forensics and Security, 7(2), 543–552.CrossRefGoogle Scholar
  19. 19.
    Nakajima, H., Mitsugami, I., Yagi, Y. (2013). Depth-based gait feature representation. Information and Media Technologies, 8(4), 1085–1089.Google Scholar
  20. 20.
    Muramatsu, D., Makihara, Y., Iwama, H., Tanoue, T., Yagi, Y. (2013). Gait verification system for supporting criminal investigation. In: 2013 2nd IAPR Asian conference on pattern recognition (ACPR). IEEE, pp. 747–748.Google Scholar
  21. 21.
    Iwama, H., Muramatsu, D., Makihara, Y., Yagi, Y. (2013). Gait verification system for criminal investigation. Information and Media Technologies, 8(4), 1187–1199.Google Scholar
  22. 22.
    Jia, S., Wang, L., Li, X. (2015). View-invariant gait authentication based on silhouette contours analysis and view estimation. IEEE/CAA Journal of Automatica Sinica, 2(2), 226–232.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jolliffe, I.T. (2002). Principal component analysis, 2nd edn. Berlin: Springer.zbMATHGoogle Scholar
  24. 24.
    Duda, R.O., Hart, P.E., Stork, D.G. (2001). Pattern classification. 2nd Edition New York, pp. 55.Google Scholar
  25. 25.
    Hastie, T., Tibshirani, R., Friedman, J., Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.Google Scholar
  26. 26.
    Panda, D.K., & Meher, S. (2016). Detection of moving objects using fuzzy color difference histogram based background subtraction. IEEE Signal Processing Letters, 23(1), 45–49.CrossRefGoogle Scholar
  27. 27.
    Rosebrock, A. (2016). Practical Python and OpenCV. pyimagesearch, Miami.Google Scholar
  28. 28.
    Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In: CVPR 2005, IEEE, pp. 886–893.Google Scholar
  29. 29.
    Yu, S., Tan, D., Tan, T. (2006). A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR’06), IEEE, vol. 4, pp. 441–444.Google Scholar
  30. 30.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Makihara, Y., Mannami, H., Tsuji, A., Hossain, M., Sugiura, K., Mori, A., Yagi, Y. (2012). The ou-isir gait database comprising the treadmill dataset. IPSJ Trans on Computer Vision and Applications, 4, 53–62.CrossRefGoogle Scholar
  32. 32.
    Gafurov, D., Snekkenes, E., Bours, P. (2007). Spoof attacks on gait authentication system. IEEE Transactions on Information Forensics and Security, 2(3), 491–502.CrossRefGoogle Scholar
  33. 33.
    Mjaaland, B.B., Bours, P., Gligoroski, D. (2010). Walk the walk: attacking gait biometrics by imitation. In: Proceedings of the 13th international conference on information security, Springer-Verlag, pp. 361–380.Google Scholar
  34. 34.
    Geradts, Z.J., Merlijn, M., de Groot, G., Bijhold, J. (2002). Use of gait parameters of persons in video surveillance systems. In: AeroSense 2002, international society for optics and Photonics, pp. 16–24.Google Scholar
  35. 35.
    Hadid, A., Ghahramani, M., Bustard, J., Nixon, M. (2013). Improving gait biometrics under spoofing attacks. In: International conference on image analysis and processing, Springer, pp. 1–10.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.School of Electronics EngineeringVIT University – Chennai CampusChennaiIndia
  3. 3.Department of Physiology and Biomedical EngineeringMayo ClinicRochesterUSA
  4. 4.Department of Computer Science and EngineeringAnna University ChennaiChennaiIndia

Personalised recommendations