Advertisement

Journal of Signal Processing Systems

, Volume 90, Issue 10, pp 1297–1309 | Cite as

Software Defined Radio Implementation of a Digital Self-interference Cancellation Method for Inband Full-Duplex Radio Using Mobile Processors

  • Mona Aghababaeetafreshi
  • Dani Korpi
  • Matias Koskela
  • Pekka Jääskeläinen
  • Mikko Valkama
  • Jarmo Takala
Article
  • 219 Downloads

Abstract

New means to improve spectral efficiency and flexibility in radio spectrum use are in high demand due to congestion of the available spectral resources. Systems deploying inband full-duplex transmission aim at providing higher spectral efficiency by concurrent transmission and reception at the same frequency. Potentially doubling system throughput, full-duplex communications is considered as an enabler technology for the upcoming 5G networks. However, system performance is degraded due to the strong self-interference (SI) caused by overlapping of high power transmit signal with the received signal of interest. Furthermore, due to commonly existing radio frequency imperfections, advanced techniques capable of mitigating nonlinear SI are required. This article presents a real-time software-defined implementation of a digital SI canceller for full-duplex transceivers, potentially applicable even in mobile-scale devices. Recently, software-defined radio has gained a lot of interest due to its higher flexibility, scalability, and shorter time-to-market cycles compared to traditional fixed-function hardware designs. Moreover, as the performance enhancements achieved by increasing the clock frequency is reaching its limits, the current trend is towards multi-core processors. Since contemporary mobile phones already contain powerful massively parallel GPUs and CPUs, feasibility of a real-time implementation on mobile processors is studied. The reported results show that by adopting the presented solution, it is possible to achieve sufficient SI cancellation under time varying coupling channel conditions. Additionally, the possibility of carrying out such advanced processing in a real-time fashion on the selected platforms is investigated, and the implementation is evaluated in terms of execution time, power, and energy consumption.

Keywords

5G Full-duplex Self-interference cancellation GPU OpenCL 

Notes

Acknowledgements

This work was supported by Tampere University of Technology graduate school, and the Academy of Finland via projects “In-Band Full-Duplex Radio Technology: Realizing Next Generation Wireless Transmission” (304147) and “Making Programmable Logic Feasible in the Cloud.” (297548).

References

  1. 1.
    CMOS. (1997). Power consumption and Cpd calculation. http://www.ti.com/lit/an/scaa035b/scaa035b.pdf. Last Accessed 08 Apr 2017.
  2. 2.
    AghababaeeTafreshi, M., Koskela, M., Korpi, D., Jääskeläinen, P., Valkama, M., Takala, J. (2016). Software defined radio implementation of adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio. In IEEE Global conference on signal and information processing.Google Scholar
  3. 3.
    Ahmed, E., & Eltawil, A.M. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.  https://doi.org/10.1109/TWC.2015.2407876.CrossRefGoogle Scholar
  4. 4.
    ARM Ltd. (2011). ARM® Cortex® -A15 MPCoreTM Processor. https://static.docs.arm.com/ddi0438/i/DDI0438.pdf. Last Accessed 08 Apr 2017.
  5. 5.
    ARM Ltd. (2013). The ARM®, MaliTM Family of Graphics Processors. http://malideveloper.arm.com/downloads/events/2013/GDC/0319-11. Last Accessed 08 Apr 2017.
  6. 6.
    Duarte, M., Dick, C., Sabharwal, A. (2012). Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 11(12), 4296–4307.  https://doi.org/10.1109/TWC.2012.102612.111278.CrossRefGoogle Scholar
  7. 7.
    Duarte, M., & Sabharwal, A. (2010). Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In Conference record of the forty fourth asilomar conference on signals, systems and computers (pp 1558–1562).  https://doi.org/10.1109/ACSSC.2010.5757799.
  8. 8.
    Duarte, M., Sabharwal, A., Aggarwal, V., Jana, R., Ramakrishnan, K.K., Rice, C.W., Shankaranarayanan, N.K. (2014). Design and characterization of a full-duplex multiantenna system for WiFi networks. IEEE Transactions on Vehicular Technology, 63(3), 1160–1177.  https://doi.org/10.1109/TVT.2013.2284712.CrossRefGoogle Scholar
  9. 9.
    El-Rewini, H., & Abd-El-Barr, M. (2005). Advanced computer architecture and parallel processing. Wiley.Google Scholar
  10. 10.
    Everett, E., Duarte, M., Dick, C., Sabharwal, A. (2011). Empowering full-duplex wireless communication by exploiting directional diversity. In Conference record of the forty fifth asilomar conference on signals, systems and computers (pp. 2002–2006).  https://doi.org/10.1109/ACSSC.2011.6190376.
  11. 11.
    3rd Generation Partnership Project. (2017). Technical Specification Group Radio Access Network; Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) (Release 14). http://www.3gpp.org/ftp//Specs/archive/36_series/36.913/36913-e00.zip. Last Accessed 19 Aug 2017.
  12. 12.
    Ghazi, A., Boutellier, J., Anttila, L., Juntti, M., Valkama, M. (2015). Data-parallel implementation of reconfigurable digital predistortion on a mobile GPU. In 2015 49th Asilomar conference on signals, systems and computers (pp. 186–191).  https://doi.org/10.1109/ACSSC.2015.7421110.
  13. 13.
    Grayver, E. (2013). Implementing software defined radio, 1 edn. Springer.Google Scholar
  14. 14.
    Hardkernel co., Ltd. (2013). ODROID-XU3. http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127. Last Accessed 08 Apr 2017.
  15. 15.
    Harris, P. (2014). The Mali GPU: an abstract machine. https://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core. Last Accessed 08 Apr 2017.
  16. 16.
    Heino, M., Korpi, D., Huusari, T., Antonio-Rodriguez, E., Venkatasubramanian, S., Riihonen, T., Anttila, L., Icheln, C., Haneda, K., Wichman, R., Valkama, M. (2015). Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays. IEEE Communications Magazine, 53(5), 91–101.CrossRefGoogle Scholar
  17. 17.
    Hong, S., Brand, J., Choi, J.I., Jain, M., Mehlman, J., Katti, S., Levis, P. (2014). Applications of self-interference cancellation in 5G and beyond. IEEE Communications Magazine, 52(2), 114–121.CrossRefGoogle Scholar
  18. 18.
    Intel Corporation. (2014). Intel® CoreTM i7 Processor Family for LGA2011 Socket. http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html. Last Accessed 08 Apr 2017.
  19. 19.
    Jensen, A. R., Lauridsen, M., Mogensen, P., Jensen, P. (2012). LTE UE power consumption model: For system level energy and performance optimization. In IEEE Vehicular technology conference (VTC Fall) (pp. 1–5).  https://doi.org/10.1109/VTCFall.2012.6399281.
  20. 20.
    Khronos OpenCL Working Group. (2015). The OpenCL Specification, version 2.0. https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf. Last Accessed 08 Apr 2017.
  21. 21.
    Kolodziej, K.E., McMichael, J.G., Perry, B.T. (2016). Multitap rf canceller for in-band full-duplex wireless communications. IEEE Transactions on Wireless Communications, 15(6), 4321–4334.  https://doi.org/10.1109/TWC.2016.2539169.CrossRefGoogle Scholar
  22. 22.
    Korpi, D., AghababaeeTafreshi, M., Piilila, M., Anttila, L., Valkama, M. (2016). Advanced architectures for self-interference cancellation in full-duplex radios: algorithms and measurements. In 2016 50th Asilomar conference on signals, systems and computers (pp. 1553–1557).  https://doi.org/10.1109/ACSSC.2016.7869639.
  23. 23.
    Korpi, D., Choi, Y. S., Huusari, T., Anttila, L., Talwar, S., Valkama, M. (2015). Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: algorithms and rf measurements. In IEEE global communications conference (pp 1–7).  https://doi.org/10.1109/GLOCOM.2015.7417188.
  24. 24.
    Korpi, D., Tamminen, J., Turunen, M., Huusari, T., Choi, Y.S., Anttila, L., Talwar, S., Valkama, M. (2016). Full-duplex mobile device: pushing the limits. IEEE Communications Magazine, 54(9), 80–87.  https://doi.org/10.1109/MCOM.2016.7565192.CrossRefGoogle Scholar
  25. 25.
    Li, K., Ghazi, A., Boutellier, J., Abdelaziz, M., Anttila, L., Juntti, M., Valkama, M., Cavallaro, J. R. (2015). Mobile GPU accelerated digital predistortion on a software-defined mobile transmitter. In 2015 IEEE Global conference on signal and information processing (GlobalSIP) (pp. 756–760)  https://doi.org/10.1109/GlobalSIP.2015.7418298.
  26. 26.
    Li, K., Ghazi, A., Tarver, C., Boutellier, J., Abdelaziz, M., Anttila, L., Juntti, M., Valkama, M., Cavallaro, J.R. (2017). Parallel digital predistortion design on mobile GPU and embedded multicore CPU for mobile transmitters. Journal of Signal Processing Systems.  https://doi.org/10.1007/s11265-017-1233-y.
  27. 27.
    Mikhael, M., van Liempd, B., Craninckx, J., Guindi, R., Debaillie, B. (2014). An in-band full-duplex transceiver prototype with an in-system automated tuning for rf self-interference cancellation. In 1st International conference on 5G for ubiquitous connectivity (pp. 110–115).  https://doi.org/10.4108/icst.5gu.2014.258118.
  28. 28.
    Qualcomm Technologies. (2015). Snapdragon 810 processor product brief. https://www.qualcomm.com/media/documents/files/snapdragon-810-processor-product-brief.pdf. Last Accessed 08 Apr 2017.
  29. 29.
    Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., Wichman, R. (2014). In-band full-duplex wireless: challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32 (9), 1637–1652.  https://doi.org/10.1109/JSAC.2014.2330193.CrossRefGoogle Scholar
  30. 30.
    Tuttlebee, W. (Ed.). (2004). Software defined radio: baseband technologies for 3G handsets and basestations, 1st edn. Hoboken: Wiley.Google Scholar
  31. 31.
    Widrow, B., McCool, J.M., Larimore, M.G., Johnson, C.R. (1976). Stationary and nonstationary learning characteristics of the lms adaptive filter. Proceedings of the IEEE, 64(8), 1151–1162.  https://doi.org/10.1109/PROC.1976.10286.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mona Aghababaeetafreshi
    • 1
  • Dani Korpi
    • 1
  • Matias Koskela
    • 1
  • Pekka Jääskeläinen
    • 1
  • Mikko Valkama
    • 1
  • Jarmo Takala
    • 1
  1. 1.Tampere University of TechnologyTampereFinland

Personalised recommendations