Journal of Signal Processing Systems

, Volume 90, Issue 4, pp 537–570 | Cite as

Comparing Three Clustering-based Scheduling Methods for Energy-Aware Rapid Design of MP2SoCs

  • Manel AmmarEmail author
  • Mouna Baklouti
  • Maxime Pelcat
  • Karol Desnos
  • Mohamed Abid


In recent years, the Electronic Design Automation (EDA) community shifted spotlights from performance to energy efficiency. Consequently, energy consumption becomes a key criterion to take into consideration during Design Space Exploration (DSE). Finding a trade-off between energy consumption and performance early in the design flow in order to satisfy time-to-market is a design challenge of EDA tools. In this paper, we propose the Energy-aWAre Rapid Design of MP2SoC (EWARDS) framework. The EWARDS framework aims at exploring, at design time, the performance and energy capabilities of modern Massively Parallel Multi-Processors System-on-Chip (MP2SoC). The key contribution of the proposed framework is the implementation of an energy-aware scheduling process, named P R E E S M P E , that combines state-of-the-art power management techniques together with Clustering-based Scheduling. The scheduling process is integrated into a Model-Driven Engineering (MDE)-based DSE approach to optimize both performance and energy efficiency in MP2SoC. Moreover, EWARDS extends the Modeling and Analysis of Real-Time and Embedded systems (MARTE) profile with power aspects of MP2SoC systems providing a high-level design entry. To demonstrate the efficiency of the proposed approach, we conducted experiments using the H.263 codec and the FFT algorithm. The obtained results demonstrate that the energy-aware scheduling process can effectively save energy in MP2SoC systems. They also confirmed that our MDE-based approach accelerates the DSE process while generating energy-efficient design decisions.


EWARDS Energy-aware design-space exploration MP2SoC Model-driven engineering PREESM Scheduling Power MARTE 


  1. 1.
    (2009). Ieee standard for design and verification of low power integrated circuits. IEEE std 1801-2009 pp 1–218,  10.1109/IEEESTD.2009.4809845.
  2. 2.
  3. 3.
    Ahmad, I., & Kwok, Y.K. (1998). On exploiting task duplication in parallel program scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9), 872–892.CrossRefGoogle Scholar
  4. 4.
    Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2014). Marte to π sdf transformation for data-intensive applications analysis. In 2014 Conference on design and architectures for signal and image processing (DASIP) (pp. 1–8): IEEE.Google Scholar
  5. 5.
    Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2016a). Automatic generation of s-lam descriptions from uml/marte for the dse of massively parallel embedded systems. In Software engineering, artificial intelligence, networking and parallel/distributed computing 2015 (pp. 195–211): Springer.Google Scholar
  6. 6.
    Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2016b). On exploiting energy-aware scheduling algorithms for mde-based design space exploration of mp2soc. In 24th euromicro international conference on parallel, distributed, and network-based processing (PDP 2016) (pp. 643–650): IEEE.Google Scholar
  7. 7.
    Arpinen, T., Salminen, E., Hämäläinen, T.D., & Hännikäinen, M. (2012). Marte profile extension for modeling dynamic power management of embedded systems. Journal of Systems Architecture, 58(5), 209–219.CrossRefGoogle Scholar
  8. 8.
    Atitallah, R.B., Piel, E., Niar, S., Marquet, P., & Dekeyser, J.L. (2007). Multilevel mpsoc simulation using an mde approach. In 2007 IEEE International, SOC Conference (pp. 197–200): IEEE.Google Scholar
  9. 9.
    Baklouti, M., Marquet, P., Dekeyser, J.L., & Abid, M. (2015). Fpga-based many-core system-on-chip design. Microprocessors and Microsystems, 39(4), 302–312.CrossRefGoogle Scholar
  10. 10.
    Bansal, S., Kumar, P., & Singh, K. (2003). An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, 14(6), 533–544.CrossRefGoogle Scholar
  11. 11.
    Ben Abdallah, F., Trabelsi, C., Ben Atitallah, R., & Abed, M. (2014). Early power-aware design space exploration for embedded systems: Mpeg-2 case study. In 2014 international symposium on system-on-chip (soc) (pp. 1–8): IEEE.Google Scholar
  12. 12.
    Ben Atitallah, R., Senn, E., Chillet, D., Lanoe, M., & Blouin, D. (2013). An efficient framework for power-aware design of heterogeneous mpsoc. IEEE Transactions on Industrial Informatics, 9(1), 487–501.CrossRefGoogle Scholar
  13. 13.
    Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299–316.CrossRefGoogle Scholar
  14. 14.
    Bilal, K., Fayyaz, A., Khan, S.U., & Usman, S. (2015). Power-aware resource allocation in computer clusters using dynamic threshold voltage scaling and dynamic voltage scaling: comparison and analysis. Cluster Computing, 18(2), 865–888.CrossRefGoogle Scholar
  15. 15.
    Bodin, B., Munier-Kordon, A., & De Dinechin, B.D. (2012). K-periodic schedules for evaluating the maximum throughput of a synchronous dataflow graph (pp. 152–159): IEEE.Google Scholar
  16. 16.
    Bonfietti, A., Benini, L., Lombardi, M., & Milano, M. (2010). An efficient and complete approach for throughput-maximal sdf allocation and scheduling on multi-core platforms. In Proceedings of the conference on design, automation and test in Europe, European design and automation association (pp. 897– 902).Google Scholar
  17. 17.
    Brooks, D., Tiwari, V., & Martonosi, M. (2000). Wattch: a framework for architectural-level power analysis and optimizations, vol 28. ACM.Google Scholar
  18. 18.
    Buck, J.T., Ha, S., Lee, E.A., & Messerschmitt, D.G. (1994). Ptolemy: a framework for simulating and prototyping heterogeneous systems.Google Scholar
  19. 19.
    Callou, GRdA, Maciel, P.R.M., de Andrade, E.C., Tavares, E.A.G., & et al. (2008). A coloured petri net based approach for estimating execution time and energy consumption in embedded systems. In Proceedings of the 21st annual symposium on integrated circuits and system design (pp. 134–139): ACM.Google Scholar
  20. 20.
    Chen, H., Shirazi, B., & Marquis, J. (1993). Performance evaluation of a novel scheduling method: Linear clustering with task duplication. In Proceedings of the 2nd international conference on parallel and distributed systems (pp. 270–275).Google Scholar
  21. 21.
    Chung, Y.C., & Ranka, S. (1992). Applications and performance analysis of a compile-time optimization approach for list scheduling algorithms on distributed memory multiprocessors. In Proceedings of supercomputing’92 (pp. 512–521): IEEE.Google Scholar
  22. 22.
    Colin, J.Y., & Chrétienne, P. (1991). Cpm scheduling with small communication delays and task duplication. Operations Research, 39(4), 680–684.CrossRefzbMATHGoogle Scholar
  23. 23.
    Cong, J., Fang, Z., Gill, M., & Reinman, G. (2015). Parade: A cycle-accurate full-system simulation platform for accelerator-rich architectural design and exploration. In Proceedings of the IEEE/ACM international conference on computer-aided design (pp. 380–387): IEEE press.Google Scholar
  24. 24.
    Consortium, S., & et al. (2011). Scilab: The free software for numerical computation, Paris, Scilab Consortium.Google Scholar
  25. 25.
    Corporation, T. (2011). Tile processor user architecture manual. release 2.4 edn.Google Scholar
  26. 26.
    Darbha, S., & Agrawal, D.P. (1998). Optimal scheduling algorithm for distributed-memory machines. IEEE Transactions on Parallel and Distributed Systems, 9(1), 87–95.CrossRefGoogle Scholar
  27. 27.
    DeAntoni, J., & Mallet, F. (2012). Timesquare: Treat your models with logical time. In Objects, models, components, patterns (pp. 34–41): Springer.Google Scholar
  28. 28.
    Dennard, R.H., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-state Circuits, 9(5), 256–268.CrossRefGoogle Scholar
  29. 29.
    Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., & Aridhi, S. (2013). Pimm: Parameterized and interfaced dataflow meta-model for mpsocs runtime reconfiguration. In 2013 international conference on embedded computer systems: architectures, modeling, and simulation (SAMOS XIII) (pp. 41–48): IEEE.Google Scholar
  30. 30.
    Desnos, K., Pelcat, M., Nezan, J.F., & Aridhi, S. (2016). On memory reuse between inputs and outputs of dataflow actors. ACM Transactions on Embedded Computing Systems (TECS), 15(2), 30.CrossRefGoogle Scholar
  31. 31.
    de Dinechin, B.D., Ayrignac, R., Beaucamps, P.E., Couvert, P., Ganne, B., de Massas, P.G., Jacquet, F., Jones, S., Chaisemartin, N.M., Riss, F., & et al (2013). A clustered manycore processor architecture for embedded and accelerated applications. In HPEC (pp. 1–6).Google Scholar
  32. 32.
    Erbas, C. (2007). System-level modelling and design space exploration for multiprocessor embedded system-on-chip architectures, vol 132. Amsterdam university press.Google Scholar
  33. 33.
    Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., & Burger, D. (2012). Dark silicon and the end of multicore scaling. IEEE Micro (3):122–134.Google Scholar
  34. 34.
    Ghamarian, A.H., Geilen, M., Stuijk, S., Basten, T., Moonen, A., Bekooij, M.J., Theelen, B.D., & Mousavi, M. (2006). Throughput analysis of synchronous data flow graphs. In 2006 sixth international conference on application of concurrency to system design, 2006. ACSD (pp. 25–36): IEEE.Google Scholar
  35. 35.
    Gomez C., Deantoni J., & Mallet F. (2012). Multi-view power modeling based on uml, marte and sysml. In 2012 38th EUROMICRO conference on Software engineering and advanced applications (SEAA) (pp. 17–20): IEEE.Google Scholar
  36. 36.
    Goossens, S., Akesson, B., Koedam, M., Nejad, A.B., Nelson, A., & Goossens, K. (2013). The compsoc design flow for virtual execution platforms. In Proceedings of the 10th FPGAworld conference (p. 7): ACM.Google Scholar
  37. 37.
    Graf, S., & Hooman, J. (2004). Correct development of embedded systems. In Software architecture (pp. 241–249). springer.Google Scholar
  38. 38.
    Graf, S., Ober, I., & Ober, I. (2006). A real-time profile for uml. International Journal on Software Tools for Technology Transfer, 8(2), 113–127.CrossRefzbMATHGoogle Scholar
  39. 39.
    Gray, I., & Audsley, N.C. (2012). Challenges in software development for multicore system-on-chip development. In 2012 23rd IEEE international symposium on Rapid system prototyping (RSP) (pp. 115–121): IEEE.Google Scholar
  40. 40.
    Group, O.M. (2005). Uml profile, for schedulability, performance, and time. OMG document, http://www.omgorg/spec/SPTP/11.
  41. 41.
    Group, O.M. (2006). Uml profile for system on a chip. OMG document, http://www.omgorg/spec/SoCP/10.
  42. 42.
    Group, O.M. (2011a). Uml profile for marte: Modeling and analysis of real-time embedded systems.
  43. 43.
    Group, O.M. (2011b). Uml profile for marte: Modeling and analysis of real-time embedded systems. OMG document, http://www.omgorg/spec/MARTE/10/PDF/.
  44. 44.
    Group, O.M. (2015). Omg systems modeling language. OMG document, http://www.omgorg/spec/SysML/14/.
  45. 45.
    Gruian, F., & Kuchcinski, K. (2001). Lenes: task scheduling for low-energy systems using variable supply voltage processors. In Proceedings of the 2001 Asia and South Pacific design automation conference (pp. 449–455): ACM.Google Scholar
  46. 46.
    Grüttner, K., Hartmann, P.A., Hylla, K., Rosinger, S., Nebel, W., Herrera, F., Villar, E., Brandolese, C., Fornaciari, W., Palermo, G., & et al (2013). The complex reference framework for hw/sw co-design and power management supporting platform-based design-space exploration. Microprocessors and Microsystems, 37(8), 966–980.CrossRefGoogle Scholar
  47. 47.
    Guduric, P., Puder, A., & Todtenhofer, R. (2009). A comparison between relational and operational qvt mappings. In ITNG’09 sixth international conference on information technology: new generations, 2009 (pp. 266–271): IEEE.Google Scholar
  48. 48.
    Guzek, M., Pecero, J.E., Dorronsoro, B., & Bouvry, P. (2014). Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems. Applied Soft Computing, 24, 432–446.CrossRefGoogle Scholar
  49. 49.
    Hagner, M., Aniculaesei, A., & Goltz, U. (2011). Uml-based analysis of power consumption for real-time embedded systems. In 2011 IEEE 10th international conference on Trust, security and privacy in computing and communications (trustcom) (pp. 1196–1201): IEEE.Google Scholar
  50. 50.
    Holmbacka, S., Nogues, E., Pelcat, M., Lafond, S., Menard, D., & Lilius, J. (2015). Energy-awareness and performance management with parallel dataflow applications. Journal of Signal Processing Systems :1–16.Google Scholar
  51. 51.
    Hwang, J.J., Chow, Y.C., Anger, F.D., & Lee, C.Y. (1989). Scheduling precedence graphs in systems with interprocessor communication times. SIAM Journal on Computing, 18(2), 244–257.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Initiative, S., & et al (2011). Common power format (cpf) 2.0 specification. silicon integration initiative (si2). Inc, http://www.si2org, 5, 19–68.Google Scholar
  53. 53.
    Jeffers, J., & Reinders, J. (2013). Intel Xeon Phi coprocessor high-performance programming. Newnes.Google Scholar
  54. 54.
    Jia, Z.J., Bautista, T., Núñez, A., Pimentel, A.D., & Thompson, M. (2013). A system-level infrastructure for multidimensional mp-soc design space co-exploration. ACM Transactions on Embedded Computing Systems (TECS), 13(1s), 27.CrossRefGoogle Scholar
  55. 55.
    Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen, T.D., Riihimäki, J., & Kuusilinna, K. (2006). Uml-based multiprocessor soc design framework. ACM Transactions on Embedded Computing Systems (TECS), 5(2), 281–320.CrossRefGoogle Scholar
  56. 56.
    Kempf, T., Ascheid, G., & Leupers, R. (2011). Multiprocessor Systems on Chip: Design Space Exploration. Springer Science & Business Media.Google Scholar
  57. 57.
    Khan, S.U., & Min-Allah, N. (2012). A goal programming based energy efficient resource allocation in data centers. The Journal of Supercomputing, 61(3), 502–519.CrossRefGoogle Scholar
  58. 58.
    Khecharem, A., Gomez, C., DeAntoni, J., Mallet, F., & De Simone, R. (2014). Execution of heterogeneous models for thermal analysis with a multi-view approach. In 2014 forum on specification and design languages (FDL), (Vol. 978 pp. 1–8): IEEE.Google Scholar
  59. 59.
    Kienhuis, B., Deprettere, E., Vissers, K., & van der Wolf, P. (1997). An approach for quantitative analysis of application-specific dataflow architectures. In 1997 Proceedings., IEEE international conference on application-specific systems, architectures and processors (pp. 338–349): IEEE.Google Scholar
  60. 60.
    Kim, N.S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir, M., & Narayanan, V. (2003). Leakage current: Moore’s law meets static power. computer, 36(12), 68–75.CrossRefGoogle Scholar
  61. 61.
    Koomey, J.G., Berard, S., Sanchez, M., & Wong, H. (2011). Implications of historical trends in the electrical efficiency of computing. Annals of the History of Computing. IEEE, 33(3), 46–54.MathSciNetGoogle Scholar
  62. 62.
    Kruatrachue, B., & Lewis, T. (1987). Duplication scheduling heuristics (dsh): A new precedence task scheduler for parallel processor systems Oregon State University, Corvallis, OR.Google Scholar
  63. 63.
    Kruijtzer, W., Van der Wolf, P., De Kock, E., Stuyt, J., Ecker, W., Mayer, A., Hustin, S., Amerijckx, C., De Paoli, S., & Vaumorin, E. (2008). Industrial ip integration flows based on ip-xact standards. In Design, automation and test in europe, 2008. DATE’08 (pp. 32–37): IEEE.Google Scholar
  64. 64.
    Kukkala, P., Riihimaki, J., Hannikainen, M., Hamalainen, T.D., & Kronlof, K. (2005). Uml 2.0 profile for embedded system design. In Proceedings of the conference on design, automation and test in europe-volume 2, IEEE computer society (pp. 710– 715).Google Scholar
  65. 65.
    Kumar, A., Fernando, S., Ha, Y., Mesman, B., & Corporaal, H. (2008). Multiprocessor systems synthesis for multiple use-cases of multiple applications on fpga. ACM Transactions on Design Automation of Electronic Systems (TODAES), 13(3), 40.CrossRefGoogle Scholar
  66. 66.
    Kumar Rethinagiri, S., Palomar, O., Cristal, A., Unsal, O., & Swift, M.M. (2014). Dessert: Design space exploration tool based on power and energy at system-level. In 2014 27th IEEE international System-on-chip conference (SOCC) (pp. 48–53): IEEE.Google Scholar
  67. 67.
    Künzli, S., Thiele, L., & Zitzler, E. (2005). Modular design space exploration framework for embedded systems. In Computers and digital techniques, IEE proceedings-, IET, (Vol. 152 pp. 183–192).Google Scholar
  68. 68.
    Le Tallec, J.F., DeAntoni, J., De Simone, R., Ferrero, B., Mallet, F., & Maillet-contoz, L. (2011). Combining systemc, ip-xact and uml/marte in model-based soc design. In Workshop on model based engineering for embedded systems design (m-BED).Google Scholar
  69. 69.
    Lee, E.A., & Messerschmitt, D.G. (1987). Synchronous data flow. Proceedings of the IEEE, 75(9), 1235–1245.CrossRefGoogle Scholar
  70. 70.
    Liu, W., Duan, Y., & Du, W. (2012). An energy efficient clustering-based scheduling algorithm for parallel tasks on homogeneous dvs-enabled clusters. In 2012 IEEE 16th international conference on Computer supported cooperative work in design (CSCWD) (pp. 575–582): IEEE.Google Scholar
  71. 71.
    Liu, W., Du, W., Chen, J., Wang, W., & Zeng, G. (2014). Adaptive energy-efficient scheduling algorithm for parallel tasks on homogeneous clusters. Journal of Network and Computer Applications, 41, 101–113.CrossRefGoogle Scholar
  72. 72.
    Llopis, R.P., & Goossens, K. (1998). The petrol approach to high-level power estimation. In 1998. Proceedings. 1998 international symposium on low power electronics and design (pp. 130–132): IEEE.Google Scholar
  73. 73.
    Lugato, D., Venelle, B., Ober, I., & Bruel, J.M. (2010). Model-Driven Engineering for High-Performance Computing Applications. INTECH Open Access Publisher.Google Scholar
  74. 74.
    Manzak, A., & Chakrabarti, C. (2001). Variable voltage task scheduling algorithms for minimizing energy. In International symposium on low power electronics and design, 2001 (pp. 279–282): IEEE.Google Scholar
  75. 75.
    Mischkalla, F., & Mueller, W. (2014). Architectural low-power design using transaction-based system modeling and simulation. In 2014 international conference on embedded computer systems: architectures, modeling, and simulation (SAMOS XIV) (pp. 258–265): IEEE.Google Scholar
  76. 76.
    Moore, G.E. (2006). Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Newsletter, 3(20), 33–35.CrossRefGoogle Scholar
  77. 77.
    Mudge, T. (2001). Power: a first-class architectural design constraint. Computer (4):52–58.Google Scholar
  78. 78.
    Ochoa-Ruiz, G., Guillet, S., Lamotte, F.D., Rutten, E., Bourennane, E.B., Diguet, J.P., & Gogniat, G. (2015). An mde approach for rapid prototyping and implementation of dynamic reconfigurable systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 21(1), 8.CrossRefGoogle Scholar
  79. 79.
    Oliveira, M F d S, De Brisolara, L.B., Carro, L., & Wagner, F.R. (2006). Early embedded software design space exploration using uml-based estimation. In 2006. seventeenth ieee international workshop on rapid system prototyping (pp. 24–32). IEEE.Google Scholar
  80. 80.
    Ouni, B., Belleudy, C., & Senn, E. (2012). Accurate energy characterization of os services in embedded systems. EURASIP Journal on Embedded Systems, 2012(1), 1–16.CrossRefGoogle Scholar
  81. 81.
    Papadimitriou, C.H., & Yannakakis, M. (1990). Towards an architecture-independent analysis of parallel algorithms. SIAM journal on computing, 19(2), 322–328.MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
  83. 83.
    Pelcat, M., Nezan, J.F., Piat, J., Croizer, J., & Aridhi, S. (2009a). A system-level architecture model for rapid prototyping of heterogeneous multicore embedded systems. In Conference on design and architectures for signal and image processing (DASIP) 2009 (pp. 8–pages).Google Scholar
  84. 84.
    Pelcat, M., Piat, J., Wipliez, M., Aridhi, S., & Nezan, J.F. (2009b). An open framework for rapid prototyping of signal processing applications. EURASIP journal on embedded systems, 2009(1), 1–13.CrossRefGoogle Scholar
  85. 85.
    Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., & Aridhi, S. (2014). Preesm: a dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In 2014 6th european embedded design in education and research conference (EDERC) (pp. 36–40): IEEE.Google Scholar
  86. 86.
    Posadas, H., Nicolás, A., Peñil, P., Villar, E., Broekaert, F., Bourdelles, M., Cohen, A., Lazarescu, M.T., Lavagno, L., Terechko, A., & et al (2014). Improving the design flow for parallel and heterogeneous architectures running real-time applications: The pharaon fp7 project. Microprocessors and Microsystems, 38(8), 960–975.CrossRefGoogle Scholar
  87. 87.
    Power, D. (2013). Aceplorer.Google Scholar
  88. 88.
    Project, T.S.I. (2016).
  89. 89.
    Ranaweera, S., & Agrawal, D.P. (2000). A task duplication based scheduling algorithm for heterogeneous systems. In 14th international parallel and distributed processing symposium, 2000. IPDPS 2000. Proceedings (pp. 445–450): IEEE.Google Scholar
  90. 90.
    Research, P. (2001). Diesel user manual. Philips electronic design and tools group.Google Scholar
  91. 91.
    Rethinagiri, S.K., Palomar, O., Unsal, O., Cristal, A., Ben-Atitallah, R., & Niar, S. (2014). Pets: power and energy estimation tool at system-level. In 2014 15th international symposium on Quality electronic design (ISQED) (pp. 535–542): IEEE.Google Scholar
  92. 92.
    Reyes, V. (2008). Methods and tools for the design of multimedia mpsoc platforms at system level. Spain: Ph.d thesis, University of Las Palmas de Gran Canaria.Google Scholar
  93. 93.
    Reyes, V., Kruijtzer, W., Bautista, T., Alkadi, G., & Núñez, A. (2006). A unified system-level modeling and simulation environment for mpsoc design: Mpeg-4 decoder case study. In Proceedings of the conference on design, automation and test in europe: Proceedings, european design and automation association (pp. 474–479).Google Scholar
  94. 94.
    Riccobene, E., Scandurra, P., Rosti, A., & Bocchio, S. (2005). A soc design methodology involving a uml 2.0 profile for systemc. In Design, automation and test in europe, 2005. Proceedings (pp. 704–709): IEEE.Google Scholar
  95. 95.
    Sangiovanni-Vincentelli, A., & Martin, G. (2001). Platform-based design and software design methodology for embedded systems. IEEE Design & Test of Computers (6):23–33.Google Scholar
  96. 96.
    Schattkowsky, T., & Xie, T. (2008). Uml and ip-xact for integrated sprint ip management. UML-SOC’08.Google Scholar
  97. 97.
    Senn, E., Douhib, S., Blouin, D., Laurent, J., Turki, S., & Diguet, J.P. (2009). Power and energy estimations in model-based design. In Languages for embedded systems and their applications (pp. 3–26): springer.Google Scholar
  98. 98.
    Sharifi, M., Shahrivari, S., & Salimi, H. (2013). Pasta: a power-aware solution to scheduling of precedence-constrained tasks on heterogeneous computing resources. Computing, 95(1), 67–88.CrossRefGoogle Scholar
  99. 99.
    Shorin, D., & Zimmermann, A. (2014a). Extending the software tool timenet by power consumption estimation of uml marte models. In 2014 international conference on Simulation and modeling methodologies, technologies and applications (SIMULTECH) (pp. 83–91): IEEE.Google Scholar
  100. 100.
    Shorin, D., & Zimmermann, A. (2014b). Formal description of an approach for power consumption estimation of embedded systems. In 2014 24th international workshop on Power and timing modeling, optimization and simulation (PATMOS) (pp. 1–10): IEEE.Google Scholar
  101. 101.
    Shorin, D., Zimmermann, A., & Maciel, P. (2012). Transforming uml state machines into stochastic petri nets for energy consumption estimation of embedded systems. In Sustainable internet and ICT for sustainability (sustainIT), 2012 (pp. 1–6): IEEE.Google Scholar
  102. 102.
    Singh, A.K., Das, A., & Kumar, A. (2013a). Energy optimization by exploiting execution slacks in streaming applications on multiprocessor systems. In Proceedings of the 50th annual design automation conference (p. 115): ACM.Google Scholar
  103. 103.
    Singh, A.K., Kumar, A., & Srikanthan, T. (2013b). Accelerating throughput-aware runtime mapping for heterogeneous mpsocs. ACM Transactions on Design Automation of Electronic Systems (TODAES), 18(1), 9.Google Scholar
  104. 104.
    Stuijk, S., Geilen, M., & Basten, T. (2006). Sdf ̂ 3: Sdf for free. In null (pp. 276–278): IEEE.Google Scholar
  105. 105.
    Stuijk, S., Geilen, M., & Basten, T. (2010). A predictable multiprocessor design flow for streaming applications with dynamic behaviour. In 2010 13th euromicro conference on Digital system design: architectures, methods and tools (DSD) (pp. 548–555): IEEE.Google Scholar
  106. 106.
    Stulova, A., Leupers, R., & Ascheid, G. (2012). Throughput driven transformations of synchronous data flows for mapping to heterogeneous mpsocs. In 2012 international conference on embedded computer systems (SAMOS) (pp. 144–151): IEEE.Google Scholar
  107. 107.
    Taylor, M.B. (2012). Is dark silicon useful?: harnessing the four horsemen of the coming dark silicon apocalypse. In Proceedings of the 49th annual design automation conference (pp. 1131–1136): ACM.Google Scholar
  108. 108.
    Theelen, B.D. (2004). Performance modelling for system-level design. Citeseer.Google Scholar
  109. 109.
    simulation tool S (2016).
  110. 110.
    Trabelsi, C., Atitallah, R.B., Meftali, S., Dekeyser, J.L., & Jemai, A. (2011). A model-driven approach for hybrid power estimation in embedded systems design. EURASIP Journal on Embedded Systems, 2011(1), 1–15.CrossRefGoogle Scholar
  111. 111.
    Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., & et al (2013). An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 16(1), 3–15.CrossRefGoogle Scholar
  112. 112.
    Wang, L., Khan, S.U., Chen, D., Kołodziej, J., Ranjan, R., Xu, C.Z., & Zomaya, A. (2013). Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems, 29(7), 1661–1670.CrossRefGoogle Scholar
  113. 113.
    Wei, G.Y., Kim, J., Liu, D., Sidiropoulos, S., & Horowitz, M.A. (2000). A variable-frequency parallel i/o interface with adaptive power-supply regulation. IEEE Journal of Solid-state Circuits, 35(11), 1600–1610.CrossRefGoogle Scholar
  114. 114.
    van der Wolf, P., de Kock, E., Henriksson, T., Kruijtzer, W., & Essink, G. (2004). Design and programming of embedded multiprocessors: an interface-centric approach. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis (pp. 206–217): ACM.Google Scholar
  115. 115.
    Wu, F., Wu, Q., & Tan, Y. (2015). Workflow scheduling in cloud: a survey. The Journal of Supercomputing, 71(9), 3373–3418.CrossRefGoogle Scholar
  116. 116.
    Yang, T., & Gerasoulis, A. (1991). A fast static scheduling algorithm for dags on an unbounded number of processors. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing (pp. 633–642): ACM.Google Scholar
  117. 117.
    Yang, T., & Gerasoulis, A. (1994). Dsc: Scheduling parallel tasks on an unbounded number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9), 951–967.CrossRefGoogle Scholar
  118. 118.
    Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced cpu energy. In Proceedings., 36th annual symposium on foundations of computer science, 1995 (pp. 374–382): IEEE.Google Scholar
  119. 119.
    Ye, W., Vijaykrishnan, N., Kandemir, M., & Irwin, M.J. (2000). The design and use of simplepower: a cycle-accurate energy estimation tool. In Proceedings of the 37th annual design automation conference (pp. 340–345): ACM.Google Scholar
  120. 120.
    Zhu, D., Melhem, R., & Childers, B.R. (2003). Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed Systems, 14 (7), 686–700.CrossRefGoogle Scholar
  121. 121.
    Zong, Z., Manzanares, A., Ruan, X., & Qin, X. (2011). Ead and pebd: two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Transactions on Computers, 60(3), 360–374.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Manel Ammar
    • 1
    Email author
  • Mouna Baklouti
    • 1
  • Maxime Pelcat
    • 2
  • Karol Desnos
    • 2
  • Mohamed Abid
    • 1
  1. 1.CES LaboratoryNational Engineering School of SfaxSfaxTunisia
  2. 2.IETR, INSA Rennes, CNRS UMR 6164UEBRennesFrance

Personalised recommendations