Advertisement

Journal of Signal Processing Systems

, Volume 89, Issue 3, pp 445–455 | Cite as

Implementation of a Multirate Resampler for Multi-carrier Systems on GPUs

  • Scott C. KimEmail author
  • Shuvra S. Bhattacharyya
Article
  • 149 Downloads

Abstract

Efficient sample rate conversion is of widespread importance in modern communication and signal processing systems. Although many efficient kinds of polyphase filterbank structures exist for this purpose, they are mainly geared toward serial, custom, dedicated hardware implementation for a single task. There is, therefore, a need for more flexible sample rate conversion systems that are resource-efficient, and provide high performance. To address these challenges, we present in this paper an all-software-based, fully parallel, multirate resampling method based on graphics processing units (GPUs). The proposed approach is well-suited for wireless communication systems that have simultaneous requirements on high throughput and low latency. Utilizing the multidimensional architecture of GPUs, our design allows efficient parallel processing across multiple channels and frequency bands at baseband. The resulting architecture provides flexible sample rate conversion that is designed to address modern communication requirements, including real-time processing of multiple carriers simultaneously.

Keywords

Carrier aggregation GPU-based radio Multirate signal processing Polyphase decimator Polyphase interpolator Polyphase resampler 

References

  1. 1.
    Hentschel, T. (2002). Sample rate conversion in software configurable radios. Norwood: Artech House, Inc.Google Scholar
  2. 2.
    Crochiere, R. E., & Rabiner, L. R. (1983). Multirate digital signal processing. Englewood Cliffs: Prentice Hall.Google Scholar
  3. 3.
    Kim, S. C., & Bhattacharyya, S. S. (2015). An efficient GPU implementation of a multirate resampler for multicarrier systems. In Proceedings of the IEEE global conference on signal and information processing (pp. 751–755). Orlando.Google Scholar
  4. 4.
    Kim, S. C., & Bhattacharyya, S. S. (2016). A wideband front-end receiver implementation on GPUs. IEEE Transactions on Signal Processing, 64(10), 2602–2612.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  6. 6.
    Harris, F. J. (2004). Multirate signal processing for communication systems. Englewood Cliffs: Prentice Hall.Google Scholar
  7. 7.
    Franck, A. (2011). Arbitrary sample rate conversion with resampling filters optimized for combination with oversampling. In Proceedings of the IEEE workshop on applications of signal processing to audio and acoustics (pp. 149–152).Google Scholar
  8. 8.
    Dick, C., & Harris, F. (2004). Options for arbitrary resamplers in FPGA-based modulators. In Proceedings of the IEEE Asilomar conference on signals, systems, and computers (pp. 777– 781).Google Scholar
  9. 9.
    Lyons, R. (2010). Understanding digital signal processing. Englewood Cliffs: Prentice Hall.Google Scholar
  10. 10.
    CUDA C programming guide (2016). [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/.
  11. 11.
    Wilt, N (2013). CUDA handbook: a comprehensive guide to GPU programming. Addison-Wesley Professional.Google Scholar
  12. 12.
    Kim, S. C., Plishker, W. L., & Bhattacharyya, S. S. (2013). An efficient GPU implementation of an arbitrary resampling polyphase channelizer. In Proceedings of the conference on design and architectures for signal and image processing (pp. 231–238). Cagliari.Google Scholar
  13. 13.
    van der Veldt, K., van Nieuwpoort, R., Varbanescu, A. L., & Jesshope, C. (2012). A polyphase filter for GPUs and multi-core processors. In Proceedings of the workshop on high-performance computing for astronomy (pp. 33–40).Google Scholar
  14. 14.
    Kim, S. C., Plishker, W. L., Bhattacharyya, S. S., & Cavallaro, J. R. (2012). GPU-based acceleration of symbol timing recovery. In Proceedings of the conference on design and architectures for signal and image processing (pp. 1–8). Karlsruhe.Google Scholar
  15. 15.
    Kim, S. C., & Bhattacharyya, S. S. (2014). Implementation of a low complexity low latency arbitrary resampler on GPUs. In Proceedings of the IEEE Dallas circuits and systems conference (pp. 1–4). Dallas.Google Scholar
  16. 16.
    Jorgovanovic, M., Pajic, M., Kvascev, G., & Popovic, J. (2008). FPGA design of arbitrary down-sampler. In Proceedings of the international conference on microelectronics (pp. 391– 394).Google Scholar
  17. 17.
    Tietche, B. H., Romain, O., & Denby, B. (2015). A practical FPGA-based architecture for arbitrary-ratio sample rate conversion. Journal of Signal Processing Systems, 78(2), 147–154.CrossRefGoogle Scholar
  18. 18.
    Adhinarayanan, V., Koehn, T., Kepa, K., Feng, W., & Athanas, P. (2014). On the performance and energy efficiency of FPGAs and GPUs for polyphase channelization. In Proceedings of the international conference on ReConFigurable computing and FPGAs (pp. 1–7).Google Scholar
  19. 19.
    Li, K., Wu, M., Wang, G., & Cavallaro, J. R. (2014). A high performance GPU-based software-defined basestation. In Proceedings of the IEEE Asilomar conference on signals, systems, and computers (pp. 2060–2064).Google Scholar
  20. 20.
    Li, K., Ghazi, A., Boutellier, J., Abdelaziz, M., Anttila, L., Juntti, M., Valkama, M., & Cavallaro, J. R. (2015). Mobile GPU accelerated digital predistortion on a software-defined mobile transmitter. In Proceedings of the IEEE global conference on signal and information processing (pp. 756–760).Google Scholar
  21. 21.
    Dahlman, E., Parkvall, S., & Skold, J. (2011). 4G: LTE/LTE–advanced for mobile broadband. New York: Academic.Google Scholar
  22. 22.
    CUDA GPUs NVIDIA developer (2016). [Online]. Available: https://developer.nvidia.com/.
  23. 23.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  24. 24.
    Hossain, E., & Hasan, M. (2015). 5G cellular: key enabling technologies and research challenges. IEEE Instrumentation & Measurement Magazine, 18(3), 11–21.CrossRefGoogle Scholar
  25. 25.
    Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G—suitability for short packet and low latency transmissions. In Proceedings of the vehicular technology conference (pp. 1–5).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of Maryland at College ParkCollege ParkUSA
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations