Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Selectable Discrete-Voltage Output and Fast-Settling Low-Dropout Regulator Using Half Digitally-Assistant Voltage Accelerator

Abstract

This paper presents a selectable discrete-voltage output and fast-settling low-dropout regulator (LDO) by using half digitally-assistant voltage accelerator. The transition response time within reference switching and transient load regulation is significantly reduced by utilizing the discrete-voltage control technique and the half digitally-assistant voltage accelerator. The proposed LDO regulator provides two selectable discrete-voltage outputs of 2.8 V and 1.8 V by using the discrete-voltage control technique. The settling time is reduced by utilizing the half digitally-assistant voltage accelerator when the output voltage is switching. Furthermore, the new comparator architecture is proposed to avoid large under−/over-shoot voltage of the LDO output. According to the experimental results, the settling time of the proposed LDO regulator can be significantly reduced from 4.2 ms to 14.892 μs. Moreover, the discrete-voltage control unit and the half digitally-assistant voltage accelerator of the proposed LDO regulator consume only 0.11 mW under a load current of 100 mA. The figure of merit (FOM) of the proposed LDO regulator is improved by over 20 %, in comparison to previous works.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. 1.

    Nakai, M., Akui, S., & Seno, K. (2005). Dynamic voltage and frequency Management for a Low-Power Embedded Microprocessor. IEEE Journal of Solid-State Circuits, 40(1), 28–35.

  2. 2.

    Oowaki, Y., Shiratake, S., Fujyoshi, T., Hamada, M., Hatori, F., Murakata, M., & Takahashi, M. (2006). Module-wise dynamic voltage and frequency scaling for a 90 nm H.264/MPEG-4 codec LSI. IEICE Transactions on Electronics, E89-C(3), 263–270.

  3. 3.

    Chen, Y., Lin, Y. W., Tsao, Y. C., & Lee, C. Y. (2008). A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems. IEEE Journal of Solid-State Circuits, 43(5), 1260–1273.

  4. 4.

    Yang, W. B., Lo, Y. L., & Chao, T. S. (2010). A pseudo fractional-N clock generator with 50 % duty cycle output. IEICE Transactions on Electronics, E93-C(3), 309–316.

  5. 5.

    Shi, C., Walker, B. C., Zeisel, E., Hu, B., & McAllister, G. H. (2007). A highly integrated power management IC for advanced mobile applications. IEEE Journal of Solid-State Circuits, 42(8), 1723–1731.

  6. 6.

    Lam, Y. H., and Ki, W. H. (2008). A 0.9 V 0.35um adaptively biased CMOS LDO regulator with fast transient response. IEEE ISSCC Digest of Technical Papers, 442–626.

  7. 7.

    Wakimoto, T. (2010). LDO design methodology and an intelligent power management sub-system IC for CDMA handsets. IEICE Transactions on Electronics, E93-C(10), 1518–1524.

  8. 8.

    Lau, S. K., Mok, P. K. T., & Leung, K. N. (2007). A low-dropout regulator for SoC with Q-reduction. IEEE Journal of Solid-State Circuits, 42(3), 658–664.

  9. 9.

    Ho, E. N. Y., & Mok, P. K. T. (2010). A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-Chip application. IEEE Transactions on Circuits and Systems II, 57(2), 80–84.

  10. 10.

    Milliken, R. J., Silva-Martínez, J., & Sánchez-Sinencio, E. (2007). Full on-Chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I, 54(9), 1879–1890.

  11. 11.

    Giustolisi, G., Palumbo, G., & Spitale, E. (2010). A 50-mA 1-nF low-voltage low-dropout voltage regulator for SoC applications. ETRI Journal, 32(4), 520–529.

  12. 12.

    Man, T. Y., Leung, K. N., Leung, C. Y., Mok, P. K. T., & Chan, M. (2008). Development of single-transistor-control LDO based on flipped voltage follower for SoC. IEEE Transactions on Circuits and Systems I, 55(5), 1392–1401.

  13. 13.

    Garimella, M., Rashid, W., & Furth, P. M. (2010). Reverse nested miller compensation using current buffers in a three-stage LDO. IEEE Transactions on Circuits and Systems II, 57(4), 250–254.

  14. 14.

    Zhan, & Ki, W.-H. (2010). Output-capacitor-free adaptively biased low-dropout regulator for system-on-chips. IEEE Transactions on Circuits and Systems I, 57(5), 1017–1028.

  15. 15.

    Ho, M., Leung, K. N., & Leung, C. Y. (2011). Dynamic bias-current boosting technique for ultralow-power low-dropout regulator in biomedical applications. IEEE Transactions on Circuits and Systems II, 58(3), 174–178.

  16. 16.

    Guo, J., & Leung, K. N. (2010). A 6-μW Chip-area-efficient output-Capacitorless LDO in 90-nm CMOS technology. IEEE Journal of Solid-State Circuits, 45(9), 1896–1905.

  17. 17.

    Guo, S., & Lee, H. (2011). Dual active-capacitive-feedback compensation for low-power large-capacitive-load Threee-stage amplifiers. IEEE Journal of Solid-State Circuits, 46(2), 452–464.

  18. 18.

    Al-Shyoukh, M., Lee, H., & Perez, R. (2007). A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE Journal of Solid-State Circuits, 42(8), 1732–1742.

  19. 19.

    Lin, H. C., Wu, H. H., & Chang, T. Y. (2008). An active-frequency compensation scheme for CMOS low-dropout regulators with transient-response improvement. IEEE Transactions on Circuits and Systems II, 55(9), 853–857.

  20. 20.

    Leung, K. N., & Ng, Y. S. (2010). A CMOS low-dropout regulator with a momentarily current-boosting voltage buffer. IEEE Transactions on Circuits and Systems I, 57(9), 2312–2319.

  21. 21.

    Lu, S. H., Huang, W. J., and Liu, S. I. (2005). A fast-recovery low dropout linear regulator for any-type output capacitors. IEEE ASSCC Digest of Technical Papers, 497–500.

  22. 22.

    Chava, C. K., & Silva-Martinez, J. (2004). A frequency compensation scheme for LDO regulator voltage regulators. IEEE Transactions on Circuits and Systems I, 51(6), 1041–1050.

  23. 23.

    Yan, Z., Shen, L., Zhao, Y., and Yue, S. (2008). A low-voltage CMOS low-dropout regulator with novel capacitor-multiplier frequency compensation. IEEE ISCAS Digest of Technical Papers, 2685–2688.

  24. 24.

    Huang, H. W., Lin, C. H., and Chen, K. H. (2008). High-performance low-dropout regulator achieved by fast transient mechanism. IEEE ESSCIRC, 350–353.

  25. 25.

    Hazucha, P., Karnik, T., Bloechel, B. A., Parsons, C., Finan, D., & Borkar, S. (2005). Area-efficient linear regulator with ultra-fast load regulation. IEEE Journal of Solid-State Circuits, 40(4), 933–940.

  26. 26.

    Onizuka, K., & Sakurai, T. (2006). VDD-hopping accelerator for on-chip power supply circuit to achieve nanosecond-order transient time. IEEE Journal of Solid-State Circuits, 41(4), 2382–2389.

  27. 27.

    Wu, Y. C., Huang, C. Y., and Liu, B. D. (2009). A low dropout regulator with programmable output. Proceedings on IEEE Conference on Industrial Electronics and Applications, 3357–3361.

  28. 28.

    Wang, J. H., Tsai, C. H., & Lai, S. W. (2012). A low-dropout regulator with tail current control for DPWM clock correction. IEEE Transactions on Circuits and Systems II, 59(1), 45–49.

  29. 29.

    Babayan-Mashhadi, S., & Lotfi, R. (2014). Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 343–352.

  30. 30.

    Kong, T. H., Hong, S. W., & Cho, G. H. (2014). A 0.791 mm2 on-Chip self-aligned comparator controller for boost DC-DC converter using switching noise robust charge-pump. IEEE Journal of Solid-State Circuits, 49(2), 502–512.

  31. 31.

    Rabuske, T., Rabuske, J. F., and Rodrigues, C. (2015). An 8-bit 0.35-V 5.04-fJ/conversion-step SAR ADC with background self-calibration of comparator offset. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23,(7), 1301–1307.

  32. 32.

    Fahim, M. (2003). A compact, low-power low-jitter digital PLL. IEEE ESSCIRC, 101–104.

Download references

Acknowledgments

The authors would like to thank the National Chip Implementation Center and National Science Council, Taiwan, for fabricating this chip and supporting this work, respectively.

Author information

Correspondence to Wei-Bin Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Hong, M. & Shen, J.M. A Selectable Discrete-Voltage Output and Fast-Settling Low-Dropout Regulator Using Half Digitally-Assistant Voltage Accelerator. J Sign Process Syst 89, 347–362 (2017). https://doi.org/10.1007/s11265-016-1205-7

Download citation

Keywords

  • Low-dropout regulator
  • Discrete-voltage control unit
  • Half digitally-assistant voltage accelerator
  • Fast-settling
  • New comparator architecture