Journal of Signal Processing Systems

, Volume 88, Issue 3, pp 463–468 | Cite as

Acceleration of Zelinski Post-Filtering Calculation

Article
  • 138 Downloads

Abstract

In this paper we propose a novel fast algorithm for calculating the transfer function of the Zelinski post-filter in a microphone array. The proposed algorithm requires less memory and fewer arithmetical multiplications. We demonstrate that for the “classical” algorithm computational complexity increases quadratically as a function of the number of microphones in the array. In contrast, the computational complexity of the proposed algorithm increases linearly. This provides a considerable acceleration in the calculation of the post-filter transfer function in real-time systems.

Keywords

Zelinski Microphone array Post-filtering 

References

  1. 1.
    Zelinski, R. (1988). A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 2578–2581). New York.Google Scholar
  2. 2.
    Kumatani, K., McDonough, J., & Raj, B. (2012). Microphone array processing for distant speech recognition: From close-talking microphones to far-field sensors. IEEE Signal Processing Magazine, 29(6), 127–140.CrossRefGoogle Scholar
  3. 3.
    Marro, C., Mahieux, Y., & Simmer, K. U. (1998). Analysis of noise reduction and dereverberation techniques based on microphone arrays with postfiltering. IEEE Transactions on Speech and Audio Processing, 6, 240–259.CrossRefGoogle Scholar
  4. 4.
    Fischer, S., Kammeyer, K. D., & Simmer, K. U. (1996). Adaptive microphone arrays for speech enhancement in coherent and incoherent noise fields. Proceedings 3rd Joint Meeting Acoustics Society American and Acoustics Society Japan.Google Scholar
  5. 5.
    McCowan, I. A., & Bourlard, H. (2003). Microphone array post-filter based on noise field coherence. IEEE Transfer Speech Audio Process, 11(6), 709–716.CrossRefGoogle Scholar
  6. 6.
    Cheng, N., Liu, W., Li, P., & Xu, B. (2008). An effective microphone array post-filter in arbitrary environments. Proceedings INTERSPEECH-2008, 439–442.Google Scholar
  7. 7.
    Lollmann, H. W., & Vary, P. (2007). Post-filter design for superdirective beamformers with closely spaced microphones. Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA ’07), 291–294.Google Scholar
  8. 8.
    Wolff, T., & Buck, M. (2010). A generalized view on microphone array postfilters. In Proceedings International Workshop on Acoustic Signal Enhancement.Google Scholar
  9. 9.
    McCowan, I. A. (2001). Microphone arrays: A tutorial, (p. 38). Australia: Queensland University. http://www.idiap.ch/∼mccowan/arrays/tutorial.pdf.
  10. 10.
    Aleinik, S., & Stolbov, M. (2015). A comparative study of Speech Processing in Microphone Arrays with Multichannel alignment and Zelinski post-filtering. International Conference on Speech and Computer SPECOM-2015. In Lecture Notes in Computer Science, (Vol. 9319 pp. 34–41).Google Scholar
  11. 11.
    Stolbov, M., & Aleinik, S. (2014). Speech enhancement with microphone array using frequency-domain alignment technique. Proceedings of 54-th Conference on Audio Forensics Techniques, Technologies and Practice, 54, 1–5.Google Scholar
  12. 12.
    Stolbov, M., & Aleinik, S. (2015). Improvement of microphone array characteristics for speech capturing. Modern Applied Science, 9(6), 310–319. http://www.ccsenet.org/journal/index.php/mas/article/view/49531/26699.Google Scholar
  13. 13.
    Rabiner, L. R., & Gold, B. (1975). Theory and application of digital signal processing, (p. 777). Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
  14. 14.
    Weinstein, E., Steele, K., Agarwal, A., & Glass, J. LOUD: A 1020-Node Microphone Array and Acoustic Beamformer. International Congress on Sound and Vibration (ICSV) (2007). http://groups.csail.mit.edu/cag/mic-array.
  15. 15.
  16. 16.
    Kozlov, A., Kudashev, O., Matveev, Y. u., Pekhovsky, T., Simonchik, K., & Shulipa, A. (2013). SVID speaker recognition system for the NIST SRE 2012. Lecture Notes in Computer Science (LNCS), 8113, 278–285.CrossRefGoogle Scholar
  17. 17.
    Karpov, A., Akarun, L., Yalcin, H., Ronzhin, A., Demiroz, B., Coban, A., & Zelezny, M. (2014). Audio-visual signal processing in a multimodal assisted living environment. Proceedings of INTERSPEECH-2014, 1023–1027.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations