Journal of Signal Processing Systems

, Volume 89, Issue 2, pp 225–242 | Cite as

A Novel Image Impulse Noise Removal Algorithm Optimized for Hardware Accelerators

  • Vivek Singh Bhadouria
  • Alexandru Tanase
  • Moritz Schmid
  • Frank Hannig
  • Jürgen Teich
  • Dibyendu Ghoshal
Article

Abstract

Images are often corrupted with noise during the image acquisition and transmission stage. Here, we propose a novel approach for the reduction of random-valued impulse noise in images and its hardware implementation on various state-of-the-art FPGAs. The presented algorithm consists of two stages in which the first stage detects whether pixels have been corrupted by impulse noise and the second stage performs a filtering operation on the detected noisy pixels. The human visual system is sensitive to the presence of edges in any image therefore the filtering stage consists of an edge preserving median filter which performs the filtering operation while preserving the underlying fine image features. Experimentally, it has been found that the proposed scheme yields a better Peak Signal-to-Noise Ratio (PSNR) compared to other existing median-based impulse noise filtering schemes. The algorithm is implemented using the high-level synthesis tool PARO as a highly parallel and deeply pipelined hardware design that simultaneously exploits loop level as well as instruction level parallelism with a very short latency of only few milliseconds for 16 bit images of size 512 × 512 pixels.

Keywords

FPGA Image denoising Noise detection Parallel architecture Random-valued impulse noise 

References

  1. 1.
    The Concise Encyclopedia of Statistics. Springer, New York (2008).Google Scholar
  2. 2.
    Aizenberg, I., & Butakoff, C. (2004). Effective impulse detector based on rank-order criteria. IEEE Signal Processing Letters, 11(3), 363–366. doi:10.1109/LSP.2003.822925.CrossRefGoogle Scholar
  3. 3.
    Altera Corp (2013). Altera SDK for OpenCL Programming Guide.Google Scholar
  4. 4.
    Arvind, N.R. (2008). Hands-on Introduction to Bluespec System Verilog (BSV). In 6th ACM/IEEE International Conference on Formal Methods and Models for Co-Design, 2008. MEMOCODE 2008, pp 205–206. doi:10.1109/MEMCOD.2008.4547713.
  5. 5.
    Bhadouria, V.S., & Ghoshal D. (2015). A study on genetic expression programming-based approach for impulse noise reduction in images. Signal, Image and Video Processing pp 1–10, doi:10.1007/s11760-015-0780-6.
  6. 6.
    Bhadouria, V.S., Ghoshal, D., & Siddiqi, A.H. (2014). A new approach for high density saturated impulse noise removal using decision-based coupled window median filter. Signal, Image and Video Processing, 8(1), 71–84.CrossRefGoogle Scholar
  7. 7.
    Calypto Design Systems Inc (2012). Calypto Product Family Datasheet.Google Scholar
  8. 8.
    Chen, T., & Wu, H.R. (2001). Adaptive impulse detection using center-weighted median filters. IEEE Signal Processing Letters, 8(1), 1–3.CrossRefGoogle Scholar
  9. 9.
    Dong, Y., & Xu, S. (2007). A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Processing Letters, 14(3), 193–196. doi:10.1109/LSP.2006.884014.CrossRefGoogle Scholar
  10. 10.
    Eng, H.L., & Ma, K.K. (2001). Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing, 10(2), 242–251. doi:10.1109/83.902289.CrossRefMATHGoogle Scholar
  11. 11.
    Esakkirajan, S., Veerakumar, T., Subramanyam, A., & PremChand, C. (2011). Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Processing Letters, 18(5), 287–290. doi:10.1109/LSP.2011.2122333.CrossRefGoogle Scholar
  12. 12.
    Feautrier P., & Lengauer C. (2011). Polyhedron model. In Padua DA (ed) Encyclopedia of Parallel Computing, Springer, pp 1581–1592. doi:10.1007/978-0-387-09766-4_502.
  13. 13.
    Fischer, V., Lukac, R., & Martin, K. (2005). Cost-effective video filtering solution for real-time vision systems. EURASIP Journal on Applied Signal Processing, 2005, 2026–2042.CrossRefGoogle Scholar
  14. 14.
    Gonzalez, R.C., & Woods, R.E. (2002). Digital image processing. Engle-wood Cliffs: Prentice-Hall.Google Scholar
  15. 15.
    Gupta, S., Dutt, N., Gupta, R., & Nicolau, A. (2003). SPARK: A High-Level Synthesis Framework for Applying Parallelizing Compiler Transformations. In Proceedings of the 16th International Conference on VLSI Design, pp 461–466.Google Scholar
  16. 16.
    Hannig, F. (2009). Scheduling techniques for high-throughput loop accelerators. Dissertation, University of Erlangen-Nuremberg, Germany, Verlag Dr Hut, Munich, Germany.Google Scholar
  17. 17.
    Hannig, F., Ruckdeschel, H., Dutta, H., & Teich, J. (2008). In PARO: Synthesis of hardware accelerators for multi-dimensional dataflow-intensive applications Proceedings of the Fourth International Workshop on Applied Reconfigurable Computing (ARC), Springer, Lecture Notes in Computer Science (LNCS), vol 4943, pp 287–293. doi:10.1007/978-3-540-78610-8_30.
  18. 18.
    Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(1), 13–18. doi:10.1109/TASSP.1979.1163188.CrossRefGoogle Scholar
  19. 19.
    Hwang, H., & Haddad, R. (1995). Adaptive median filters: new algorithms and results. IEEE Transactions on Image Processing, 4(4), 499–502. doi:10.1109/83.370679.CrossRefGoogle Scholar
  20. 20.
    Lien, C.Y., Huang, C.C., Chen, P.Y., & Lin, Y.F. (2013). An efficient denoising architecture for removal of impulse noise in images. IEEE Transactions on Computers, 62(4), 631–643. doi:10.1109/TC.2011.256.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Luo, W. (2006). An efficient detail-preserving approach for removing impulse noise in images. IEEE Signal Processing Letters, 13(7), 413–416. doi:10.1109/LSP.2006.873144.CrossRefGoogle Scholar
  22. 22.
    Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In Computer vision (ICCV), 2013 IEEE International Conference on, IEEE, pp 49-56.Google Scholar
  23. 23.
    Matsubara T., Moshnyaga V.G., & Hashimoto K. (2010). A fpga implementation of low-complexity noise removal. In 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2010, IEEE, pp 255–258.Google Scholar
  24. 24.
    Petrovic, N., & Crnojevic, V. (2008). Universal impulse noise filter based on genetic programming. IEEE Transactions on Image Processing, 17(7). doi:10.1109/TIP.2008.924388.
  25. 25.
    Saeedi, J., Moradi, M.H, & Faez, K. (2010). A new wavelet-based fuzzy single and multi-channel image denoising. Image and Vision Computing, 28(12), 1611–1623. doi:10.1016/j.imavis.2010.04.004.CrossRefGoogle Scholar
  26. 26.
    Schmid, M., Hannig, F., Tanase, A., & Teich, J. (2014). High-level synthesis revised – Generation of FPGA accelerators from a domain-specific language using the polyhedron model. In Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol 25, IOS Press, Amsterdam, The Netherlands, pp 497–506. doi:10.3233/978-1-61499-381-0-497.
  27. 27.
    Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., & Kerre, E. (2006). Fuzzy two-step filter for impulse noise reduction from color images. IEEE Transactions on Image Processing, 15(11), 3567–3578. doi:10.1109/TIP.2006.877494.CrossRefGoogle Scholar
  28. 28.
    Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., & Kerre, E. (2006). A fuzzy impulse noise detection and reduction method. IEEE Transactions on Image Processing, 15(5), 1153–1162. doi:10.1109/TIP.2005.864179.CrossRefGoogle Scholar
  29. 29.
    Toh, K., & Isa, N. (2010). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284. doi:10.1109/LSP.2009.2038769.CrossRefGoogle Scholar
  30. 30.
    Villarreal, J., Park, A., Najjar, W., & Halstead, R. (2010). Designing Modular Hardware Accelerators in C with ROCCC 2.0. Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 0, 127–134. doi:10.1109/FCCM.2010.28.Google Scholar
  31. 31.
    Xilinx Inc (2013). Vivado Design Suite User Guide - High-Level synthesis.Google Scholar
  32. 32.
    Xiong, B., & Yin, Z. (2012). A universal denoising framework with a new impulse detector and nonlocal means. IEEE Transactions on Image Processing, 21(4), 1663–1675. doi:10.1109/TIP.2011.2172804.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xue, J. (1997). Unimodular transformations of non-perfectly nested loops. Parallel Computing, 22, 1621–1645.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yagou, H., Ohtake, Y., & Belyaev, A. (2002). Mesh smoothing via mean and median filtering applied to face normals. In Geometric Modeling and Processing, 2002. Proceedings, pp 124–131. doi:10.1109/GMAP.2002.1027503.
  35. 35.
    Yang, Q., Ahuja, N., & Tan, K.H. (2014). Constant time median and bilateral filtering. International Journal of Computer Vision, 1–12.Google Scholar
  36. 36.
    Yu, H., Zhao, L., & Wang, H. (2008). An efficient procedure for removing random-valued impulse noise in images. IEEE Signal Processing Letters, 15, 922–925. doi:10.1109/LSP.2008.2005051.CrossRefGoogle Scholar
  37. 37.
    Zhang, Q., Xu, L., & Jia, J. (2014). 100+ times faster weighted median filter (wmf). In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp 2830–2837. doi:10.1109/CVPR.2014.362.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vivek Singh Bhadouria
    • 1
  • Alexandru Tanase
    • 2
  • Moritz Schmid
    • 3
  • Frank Hannig
    • 2
  • Jürgen Teich
    • 2
  • Dibyendu Ghoshal
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia
  2. 2.Hardware/Software Co-Design, Department of Computer ScienceFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Siemens Healthcare GmbHErlangenGermany

Personalised recommendations