Journal of Signal Processing Systems

, Volume 85, Issue 1, pp 101–111 | Cite as

Optimization of Flexible Filter Banks Based on Fast Convolution

  • Juha Yli-KaakinenEmail author
  • Markku Renfors


Multirate filter banks can be implemented efficiently using fast-convolution (FC) processing. The main advantage of the FC filter banks (FC-FB) compared with the conventional polyphase implementations is their increased flexibility, that is, the number of channels, their bandwidths, and the center frequencies can be independently selected. In this paper, an approach to optimize the FC-FBs is proposed. First, a subband representation of the FC-FB is derived. Then, the optimization problems are formulated with the aid of the subband model. Finally, these problems are conveniently solved with the aid of a general nonlinear optimization algorithm. Several examples are included to demonstrate the proposed overall design scheme as well as to illustrate the efficiency and the flexibility of the resulting FC-FB.


Digital filters Multirate signal processing Optimization Filter banks Sampling rate conversion 



The authors acknowledge the financial support by the European Union FP7-ICT project EMPhAtiC ( under grant agreement no. 318362.


  1. 1.
    Baylon, D.M., & Lim, J.S. (1990). Transform/subband analysis and synthesis of signals. Tech. Rep. 559, Research Laboratory of Electronics, Massachusetts Institute of Technology.Google Scholar
  2. 2.
    Bogucka, H., Alexander, A.W.M., Pagadarai, S., & Kliks, A. (2011). Spectrally agile multicarrier waveforms for opportunistic wireless access. IEEE Communications Magazine, 49(6), 108–115.CrossRefGoogle Scholar
  3. 3.
    Borgerding, M. (2006). Turning overlap-save into a multiband mixing, downsampling filter bank. IEEE Signal Processing Magazine, 23(2), 158–162.CrossRefGoogle Scholar
  4. 4.
    Boucheret, M.L., Mortensen, I., & Favaro, H. (1999). Fast convolution filter banks for satellite payloads with on-board processing. IEEE Journal on Selected Areas in Communications, 17(2), 238–248.CrossRefGoogle Scholar
  5. 5.
    Coleman, T., Branch, M.A., & Grace, A. (1999). Optimization Toolbox User’s Guide. The MathWorks, Inc. Version 2.Google Scholar
  6. 6.
    Crochiere, R.E., & Rabiner, L.R. (1983). Multirate digital signal processing. Englewood Cliffs: Prentice-Hall.Google Scholar
  7. 7.
    Eghbali, A., Johansson, H., & Löwenborg, P. (2011). Reconfigurable nonuniform transmultiplexers using uniform modulated filter banks. IEEE Transactions on Circuits and Systems I, 58(3), 539–547.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communicationin cognitive radios. IEEE Communications Magazine, 46(4), 80– 85.CrossRefGoogle Scholar
  9. 9.
    Mirabbasi, S., & Martin, K. (2002). Design of prototype filter for near-perfect-reconstruction overlapped complex-modulated transmultiplexers. In Proceedings IEEE International Symposium Circuits Systems (pp. 821–824). Scottsdale, Arizona, USA.Google Scholar
  10. 10.
    Pucker, L. (2003). Channelization techniques for software defined radio. In Proceedings Software Defined Radio Technical Conference (SDR’03). Orlando, Florida, USA.Google Scholar
  11. 11.
    Quatieri, T.F. (2001). Discrete-time speech signal processing: Principles and practice: Prentice Hall.Google Scholar
  12. 12.
    Rabiner, L.R., & Gold, B. (1975). Theory and application of digital signal processing, (pp. 63–67). Englewood Cliffs: Prentice-Hall.Google Scholar
  13. 13.
    Renfors, M., & Harris, F. (2011). Highly adjustable multirate digital filters based on fast convolution. In Proceedings European Conference Circuit Theory Design (pp. 9–12). Linköping, Sweden.Google Scholar
  14. 14.
    Renfors, M., Yli-Kaakinen, J., & Harris, F. (2014). Analysis and design of efficient and flexible fast-convolution based multirate filter banks. IEEE Transactions Signal Processing, 62(15), 3768–3783.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shao, K., Alhava, J., Yli-Kaakinen, J., & Renfors,M. (2015). Fastconvolution implementation of filter bank multicarrier waveform processing. To be presented in: IEEE International Symposium Circuits Systems. Lisbon, Portugal.Google Scholar
  16. 16.
    Sorensen, H.V., & Burrus, C.S. (1993). Fast DFT and convolution algorithms. InMitra, S.K., & Kaiser, J.F. (Eds.) Handbook for digital signal processing (pp. 491–610). New York: John Wiley and Sons, Inc.Google Scholar
  17. 17.
    Sorensen, H.V., Heideman, M.T., & Burrus, C.S. (1986). On computing the split-radix FFT. IEEE Transactions on Acoustics Speech Signal Processing, 34(1), 152–156.CrossRefGoogle Scholar
  18. 18.
    Viholainen, A., Alhava, J., & Renfors, M. Efficient implementation of complex modulated filter banks using cosine and sine modulated filter banks. EURASIP Journal on Applied Signal Processing. doi:  10.1155/ASP/2006/58564
  19. 19.
    Viholainen, A., Ihalainen, T., Stitz, T.H., Renfors, M., & Bellanger, M.G. (2009). Prototype filter design for filter bank based multicarrier transmission. In Proceedings European Signal Processing Conference (EUSIPCO) (pp. 1359–1363). Glasgow, Scotland.Google Scholar
  20. 20.
    Yli-Kaakinen, J., & Renfors, M. (2013). Fast-convolution filter bank approach for non-contiguous spectrum use. In Proceedings Future Network and Mobile Summit. Lisbon, Portugal.Google Scholar
  21. 21.
    Yli-Kaakinen, J., & Renfors, M. (2014). Optimization of flexible filter banks based on fast-convolution. In Proceedings International Conference Acoustics, Speech, Signal Process (pp. 8342–8345). Florence, Italy.Google Scholar
  22. 22.
    Zhang, C., & Wang, Z. (2000). A fast frequency domain filter bank realization algorithm. In Proceedings International Conference Signal Processing (Vol. 1 pp. 130–132). Beijing, China.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communications EngineeringTampere University of TechnologyTampereFinland

Personalised recommendations