Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Iris Recognition using Robust Localization and Nonsubsampled Contourlet Based Features

Abstract

The conventional iris recognition methods do not perform well for the datasets where the eye image may contain nonideal data such as specular reflection, off-angle view, eyelid, eyelashes and other artifacts. This paper gives contributions for a reliable iris recognition method using a new scale-, shift- and rotation-invariant feature-extraction method in time-frequency and spatial domains. Indeed, a 2-level nonsubsampled contourlet transform (NSCT) is applied on the normalized iris images and a gray level co-occurrence matrix (GLCM) with 3 different orientations is computed on both spatial image and NSCT frequency subbands. Moreover, the effect of the occluded parts is reduced by performing an iris localization algorithm followed by a four regions of interest (ROI) selection. The extracted feature set is transformed and normalized to reduce the effect of extreme values in the feature vector. Next, significant features for iris recognition are selected by a two-step method composed by a filtering stage and wrapper based selection. Finally, the selected feature set is classified using support vector machine (SVM). The proposed iris identification method was tested on the public iris datasets CASIA Ver.1 and CASIA Ver.4-lamp showing a state-of-the-art performance.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Notes

  1. 1.

    Our reported results were obtained using the LOOCV method in the testing process.

References

  1. 1.

    Flom, L., & Safir, A. (Feb. 3 1987). Iris recognition system. U.S. Patent 4 641 349.

  2. 2.

    Jan, F., Usman, I., & Agha, S. (2012). Iris localization in frontal eye images for less constrained iris recognition systems. Digital Signal Processing, 22(6), 971–986. doi:10.1016/j.dsp.2012.06.001.

  3. 3.

    Daugman, J. G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161. doi:10.1109/34.244676.

  4. 4.

    Wildes, R. P. Iris recognition: An emerging biometric technology. In Proceedings of the IEEE, Sep 1997 (Vol. 85, pp. 1348–1363, Vol. 9). doi:10.1109/5.628669.

  5. 5.

    Ahamed, A., & Bhuiyan, M. I. H. Low Complexity Iris Recognition using Curvelet Transform. In International Conference on Informatics, Electronics & Vision (ICIEV), 2012 (pp. 548–553).

  6. 6.

    Farouk, R. M. (2011). Iris recognition based on elastic graph matching and Gabor wavelets. Computer Vision and Image Understanding, 115(8), 1239–1244. doi:10.1016/j.cviu.2011.04.002.

  7. 7.

    Poursaberi, A., & Araabi, B. N. (2007). Iris recognition for partially occluded images: methodology and sensitivity analysis. Eurasip Journal on Advances in Signal Processing. doi:10.1155/2007/36751.

  8. 8.

    Roy, K., Bhattacharya, P., & Suen, C. Y. (2011). Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs. Engineering Applications of Artificial Intelligence, 24(3), 458–475. doi:10.1016/j.engappai.2010.06.014.

  9. 9.

    Roy, K., Bhattacharya, P., & Suen, C. Y. (2011). Iris segmentation using variational level set method. Optics and Lasers in Engineering, 49(4), 578–588. doi:10.1016/j.optlaseng.2010.09.011.

  10. 10.

    Szewczyk, R., Grabowski, K., Napieralska, M., Sankowski, W., Zubert, M., & Napieralski, A. (2012). A reliable iris recognition algorithm based on reverse biorthogonal wavelet transform. Pattern Recognition Letters, 33(8), 1019–1026. doi:10.1016/j.patrec.2011.08.018.

  11. 11.

    Jan, F., Usman, I., & Agha, S. (2013). Reliable iris localization using Hough transform, histogram-bisection, and eccentricity. Signal Processing, 93(1), 230–241. doi:10.1016/j.sigpro.2012.07.033.

  12. 12.

    Labati, R. D., & Scotti, F. (2010). Noisy iris segmentation with boundary regularization and reflections removal. Image and Vision Computing, 28(2), 270–277. doi:10.1016/j.imavis.2009.05.004.

  13. 13.

    Jeong, D. S., Hwang, J. W., Kang, B. J., Park, K. R., Won, C. S., Park, D. K., et al. (2010). A new iris segmentation method for non-ideal iris images. Image and Vision Computing, 28(2), 254–260. doi:10.1016/j.imavis.2009.04.001.

  14. 14.

    Li, P. H., Liu, X. M., Xiao, L. J., & Song, Q. (2010). Robust and accurate iris segmentation in very noisy iris images. Image and Vision Computing, 28(2), 246–253. doi:10.1016/j.imavis.2009.04.010.

  15. 15.

    Belcher, C., & Du, Y. Z. (2009). Region-based SIFT approach to iris recognition. Optics and Lasers in Engineering, 47(1), 139–147. doi:10.1016/j.optlaseng.2008.07.004.

  16. 16.

    CASIA Iris Database. http://www.cbsr.ia.ac.cn/english/Databases.asp, 5 May 2013.

  17. 17.

    Proenca, H., Filipe, S., Santos, R., Oliveira, J., & Alexandre, L. A. (2010). The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1529–1535. doi:10.1109/Tpami.2009.66.

  18. 18.

    Kim, J., Cho, S. W., Choi, J., & Marks, R. J. (2004). Iris recognition using wavelet features. Journal of Vlsi Signal Processing Systems for Signal Image and Video Technology, 38(2), 147–156. doi:10.1023/B:Vlsi.0000040426.72253.B1.

  19. 19.

    Chen, C. H., & Chu, C. T. (2009). High performance iris recognition based on 1-D circular feature extraction and PSO-PNN classifier. Expert Systems with Applications, 36(7), 10351–10356. doi:10.1016/j.eswa.2009.01.033.

  20. 20.

    He, Z. F., Tan, T. N., Sun, Z. A., & Qiu, X. C. (2009). Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9), 1670–1684. doi:10.1109/Tpami.2008.183.

  21. 21.

    Tsai, C. C., Lin, H. Y., Taur, J., & Tao, C. W. (2012). Iris recognition using possibilistic fuzzy matching on local features. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 42(1), 150–162. doi:10.1109/Tsmcb.2011.2163817.

  22. 22.

    Do, M. N., & Vetterli, M. (2005). The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14, 2091–2106.

  23. 23.

    Li, M. Y., Jiang, M. Y., Han, M., & Yang, M. Q. Iris Recognition Based on a Novel Multiresolution Analysis Framework. In 2010 IEEE International Conference on Image Processing, 2010 (pp. 4101-4104). doi:10.1109/Icip.2010.5652298.

  24. 24.

    da Cunha, A. L., Zhou, J. P., & Do, M. N. (2006). The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 15(10), 3089–3101. doi:10.1109/Tip.2006.877507.

  25. 25.

    Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features of Image Classification. IEEE Transaction on Systems, Man and Cybernetics, 3(6), 610–621.

  26. 26.

    Khalighi, S., Tirdad, P., Pak, F., & Nunes, U. Shift and Rotation Invariant Iris Feature Extraction Based on Non-subsampled Countourlet Transform and GLCM. In In proceeding of International Conference on Pattern Recognition Applications and Methods, Vilamoura, Portugal, 2012.

  27. 27.

    Shah, S., & Ross, A. (2009). Iris segmentation using geodesic active contours. IEEE Transactions on Information Forensics and Security, 4(4), 824–836. doi:10.1109/Tifs.2009.2033225.

  28. 28.

    Masek, L. (2003). Recognition of Human Iris Patterns for Biometric Identification. The School of Computer Science and Software Engineering the University of Western Australia.

  29. 29.

    Po, D. D. Y., & Do, M. N. (2006). Directional multiscale modeling of images using the contourlet transform. IEEE Transactions on Image Processing, 15(6), 1610–1620. doi:10.1109/Tip.2006.873450.

  30. 30.

    Do, M. N., & Vetterli, M. Pyramidal directional filter banks and curvelets. In International Conference on Image Processing, 2001 (Vol. II, pp. 158-161).

  31. 31.

    Soh, L. K., & Tsatsoulis, C. (1999). Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 780–795. doi:10.1109/36.752194.

  32. 32.

    Haralick, R., & Shapiro, L. (1992). Computer and Robot Vision (Vol. 1): Addison-Wesley.

  33. 33.

    Clausi, D. A. (2002). An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of Remote Sensing, 28(1), 45–62.

  34. 34.

    Becq, G., Charbonnier, S., Chapotot, F., Buguet, A., Bourdon, L., & Baconnier, P. (2005). Comparison between five classifiers for automatic scoring of human sleep recordings. Classification and Clustering for Knowledge Discovery, 4, 113–127.

  35. 35.

    Aksoy, S., & Haralick, R. M. (2001). Feature normalization and likelihood-based similarity measures for image retrieval. Pattern Recognition Letters, 22(5), 563–582. doi:10.1016/S0167-8655(00)00112-4.

  36. 36.

    Khushaba, R. N., Al-Ani, A., & Al-Jumaily, A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38(9), 11515–11526. doi:10.1016/j.eswa.2011.03.028.

  37. 37.

    Peng, H. C., Long, F. H., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238.

  38. 38.

    Whitney, A. W. (1971). A Direct Method of Nonparametric Measurement Selection. IEEE Transactions on Computers, 20(9).

  39. 39.

    Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating search methods in feature-selection. Pattern Recognition Letters, 15(11), 1119–1125. doi:10.1016/0167-8655(94)90127-9.

  40. 40.

    Burges, C. J. C. (1998). A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. doi:10.1023/A:1009715923555.

  41. 41.

    Canu, S., Grandvalet, Y., Guigue, V., & Rakotomamonjy, A. (2005). SVM and Kernel methods Matlab toolbox.

  42. 42.

    Daugman, J. (2007). New methods in iris recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 37(5), 1167–1175. doi:10.1109/Tsmcb.2607.903540.

  43. 43.

    Basit, A., & Javed, M. Y. (2007). Localization of iris in gray scale images using intensity gradient. Optics and Lasers in Engineering, 45(12), 1107–1114. doi:10.1016/j.optlaseng.2007.06.006.

  44. 44.

    Ibrahim, M. T., Khan, T. M., Khan, S. A., Khan, M. A., & Guan, L. (2012). Iris localization using local histogram and other image statistics. Optics and Lasers in Engineering, 50(5), 645–654. doi:10.1016/j.optlaseng.2011.11.008.

Download references

Author information

Correspondence to Sirvan Khalighi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalighi, S., Pak, F., Tirdad, P. et al. Iris Recognition using Robust Localization and Nonsubsampled Contourlet Based Features. J Sign Process Syst 81, 111–128 (2015). https://doi.org/10.1007/s11265-014-0911-2

Download citation

Keywords

  • Gray level co-occurrence matrix
  • Iris recognition
  • Nonsubsampled contourlet transform
  • Feature selection