Journal of Signal Processing Systems

, Volume 76, Issue 2, pp 109–120 | Cite as

DIFFS: A Low Power, Multi-Mode, Multi-Standard Flexible Digital Front-End for Sensing in Future Cognitive Radios

  • A. ChiumentoEmail author
  • L. Hollevoet
  • S. Pollin
  • F. Naessens
  • A. Dejonghe
  • L. Van der Perre


Cognitive Radios provide communication devices with the flexibility to adjust to varying network and channel conditions. For this to be fully realizable spectrum sensing and signal reception have to happen simultaneously and have to require as little power as necessary to function in handheld devices. This work argues for the need of flexible digital-front ends as indispensable building block, able to perform control operations over the analog front-end and to perform sensing and synchronization procedures without the need of power consuming baseband processors. A low power, reconfigurable digital front-end that supports concurrent synchronization and sensing of high-throughput wireless standards is presented. Multiple operating modes, useful for various communication standards, such as LTE, WLAN and DVB-T are introduced and analyzed. The digital front-end has been implemented in 65 nm CMOS technology resulting in a chip area of 6.4 mm2. Fine grain clock gating allows synchronization at 4 mW and sensing at 7 mW power consumption. Experiments in combination with a reconfigurable analog front-end show that a 1.7 GHz wide frequency band can be scanned based on energy detection in an exceptionally low time window of 10 ms while consuming 13 mW power and that coarse energy detection can speed-up the sensing process. Furthermore, advanced feature detection for DVB-T and LTE signals is implemented and measured. Low power sensing of DVB-T signals shows that a target false alarm rate of 10 % and a detection probability of 90 % at an input power level of−106 dBm while consuming 7 mW power are possible. Synchronization-aided FFT-based LTE sensing with leakage cancellation was experimentally validated for various bandwidths showing a power consumption of maximum 20 mW.


Spectrum sensing Digital front-end 


  1. 1.
    ECC SE43. (2010) “Technical and operational requirements for the possible operation of cognitive radio systems in the ‘white spaces’ of the frequency band 470–790 MHz”, ECC report 159.Google Scholar
  2. 2.
    Masonta, M.T.; Mzyece, M.; Ntlatlapa, N., “Spectrum Decision in Cognitive Radio Networks: A Survey,” Communications Surveys & Tutorials, IEEE, vol.15, no.3, pp.1088,1107, Third Quarter 2013.Google Scholar
  3. 3.
    Pollin, S.; Lopez, E.; Antoun, A.; Van Wesemael, P.; Hollevoet, L.; Bourdoux, A.; Dejonghe, A.; Van der Perre, L., “Digital and Analog Solution for Low-Power Multi-Band Sensing,” New Frontiers in Dynamic Spectrum, 2010 I.E. Symposium on, April 2010.Google Scholar
  4. 4.
    Hollevoet, L.; Pollin, S.; Van Wesemael, P.; Naessens, F.; Dejonghe, A.; Van der Perre, L., “A 22 mW Multi-Standard Reconfigurable Spectrum Sensing Enabled Digital Frontend,” Signal Processing Systems (SiPS), 2012 I.E. Workshop on, 17–19 Oct. 2012.Google Scholar
  5. 5.
    Ingels, M.; Giannini, V.; Borremans, J.; Mandal, G.; Debaillie, B.; Van Wesemael, P.; Sano, T.; Yamamoto, T.; Hauspie, D.; Van Driessche, J.; Craninckx, J., “A 5 mm2 40nm LP CMOS 0.1-to-3GHz multistandard transceiver,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 I.E. International, pp.458,459, 7–11 Feb. 2010.Google Scholar
  6. 6.
    Pollin, S.; Hollevoet, L.; Van Wesemael, P.; Desmet, M.; Bourdoux, A.; Lopez, E.; Naessens, F.; Raghavan, P.; Derudder, V.; Dupont, S.; Dejonghe, A., “An integrated reconfigurable engine for multi-purpose sensing up to 6 GHz,” New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011 I.E. Symposium on, pp.656,657, 3–6 May 2011.Google Scholar
  7. 7.
    Tkachenko, A.; Cabric, D.; Brodersen, R.W., “Cyclostationary Feature Detector Experiments Using Reconfigurable BEE2,” New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, pp.216,219, 17–20 April 2007.Google Scholar
  8. 8.
    J. Lotze et al., “Spectrum sensing on LTE femtocells for GSM spectrum re-farming using Xilinx FPGAs”, in SDRforum, 2009.Google Scholar
  9. 9.
    Derudder, V.; Bougard, B.; Couvreur, A.; Dewilde, A.; Dupont, S.; Folens, L.; Hollevoet, L.; Naessens, F.; Novo, D.; Raghavan, P.; Schuster, T.; Stinkens, K.; Weijers, J.-W.; Van der Perre, L., “A 200Mbps + 2.14nJ/b digital baseband multi processor system-on-chip for SDRs,” VLSI Circuits, 2009 Symposium on, pp.292,293, 16–18 June 2009.Google Scholar
  10. 10.
    Diaz, I.; Wilhelmsson, L.; Rodrigues, J.; Olsson, T.; Öwall, V., “Sign-bit based architecture for OFDM Acquisition for multiple-standards,” NORCHIP, 2009, pp.1,4, 16–17 Nov. 2009.Google Scholar
  11. 11.
    Hsin-Lei Lin; Chang, R.C.; Kuang-Hao Lin; Chia-Chen Hsu, “Implementation of synchronization for 2x2 MIMO WLAN system,” Consumer Electronics, IEEE Transactions on, vol.52, no.3, pp.766,773, Aug. 2006.Google Scholar
  12. 12.
    Chao-Ming Chen; Chien-Chang Hung; Yuan-Hao Huang, “An Energy-Efficient Partial FFT Processor for the OFDMA Communication System,” Circuits and Systems II: Express Briefs, IEEE Transactions on, vol.57, no.2, pp.136,140, Feb. 2010.Google Scholar
  13. 13.
    Kalil M. A,; Puschmann A.; Mitschele-Thiel A.; Van Wesemael P.; Pollin S.; Desmet M.; “Improving the Performance of MAC Protocols in Cognitive Radio Networks through Sensing Accuracy Enhancement”, FIRE Engineering Workshop, Ghent, Belgium, 6–7 November 2012.Google Scholar
  14. 14.
    Hou-Shin Chen; Wen Gao; Daut, D.G., “Spectrum Sensing for OFDM Systems Employing Pilot Tones and Application to DVB-T OFDM,” Communications, 2008. ICC ‘08. IEEE International Conference on, vol., no., pp.3421-3426, 19–23 May 2008.Google Scholar
  15. 15.
    Borremans, J.; Mandal, G.; Giannini, V.; Debaillie, B.; Ingels, M.; Sano, T.; Verbruggen, B.; Craninckx, J., “A 40 nm CMOS 0.4–6 GHz Receiver Resilient to Out-of-Band Blockers,” Solid-State Circuits, IEEE Journal of, vol.46, no.7, pp.1659,1671, July 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Chiumento
    • 1
    Email author
  • L. Hollevoet
    • 1
  • S. Pollin
    • 1
  • F. Naessens
    • 1
  • A. Dejonghe
    • 1
  • L. Van der Perre
    • 1
  1. 1.ImecLeuvenBelgium

Personalised recommendations