Advertisement

Journal of Signal Processing Systems

, Volume 81, Issue 1, pp 45–58 | Cite as

Two Fast and Robust Modified Gaussian Mixture Models Incorporating Local Spatial Information for Image Segmentation

  • Hui Zhang
  • Tian Wen
  • Yuhui Zheng
  • Danhua Xu
  • Dingcheng Wang
  • Thanh Minh Nguyen
  • Q. M. Jonathan WuEmail author
Article

Abstract

The Gaussian Mixture Model (GMM) with the spatial constraint, e.g. Hidden Markov Random Field (HMRF), has been proven effective for image segmentation. The parameter β in the HMRF model is used to balance between robustness to noise and effectiveness of preserving the detail of the image. In other words, the determination of parameter β is, in fact, noise dependent to some degree. In this paper, we propose a simple and effective algorithm to make the traditional Gaussian Mixture Model more robust to noise, with consideration of the relationship between the local spatial information and the pixel intensity value information. The conditional probability of an image pixel is influenced by the probabilities of pixels in its immediate neighborhood to incorporate the spatial and the intensity information. In this case, the parameter β can be assigned to a small value to preserve image sharpness and detail in non-noise images. Meanwhile, the neighborhood window is used to tolerate the noise for heavy-noised images. Thus, the parameter β is independent of image noise degree in our model. Furthermore, we propose another algorithm for our modified GMM (MGMM) with the simplification of conditional probability computation (MGMM_S). Finally, our algorithm is not limited to GMM – it is general enough so that it can be applied to other distributions based on the construction of the Finite Mixture Model (FMM) technique. Experimental results of synthetic and real images demonstrate the improved robustness and effectiveness of our approach.

Keywords

EM algorithm Gaussian Mixture Model HMRF Image segmentation Local information Spatial constraints 

Notes

Acknowledgments

This work was supported in part by the Canada Chair Research Program and the Natural Sciences and Engineering Research Council of Canada. This work was supported in part by the National Natural Science Foundation of China under Grant 61105007 and 61103141. This work was supported in part by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions). This work was supported in part by the Natural Science Foundation of Jiangsu Province NO. BK2012858. This work was supported in part by the Innovation Fund of China Academy of Space Technology: CAST201302.

References

  1. 1.
    McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRefGoogle Scholar
  2. 2.
    C.M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.Google Scholar
  3. 3.
    Krinidis, S., & Chatzis, V. (2010). A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process, 5(19), 1328–1337.CrossRefGoogle Scholar
  4. 4.
    Ahmed, M., Yamany, S., Mohamed, N., Farag, A., & Moriarty, T. (2002). A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging, 21, 193–199.CrossRefGoogle Scholar
  5. 5.
    Chen, S., & Zhang, D. (2004). Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man and Cybernetics, 34(4), 1907–1916.CrossRefGoogle Scholar
  6. 6.
    Cai, W., Chen, S., & Zhang, D. (March 2007). Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn, 40(3), 825–838.Google Scholar
  7. 7.
    Carson, C., Belongie, S., Greenspan, H., & Malik, J. (Aug. 2002). Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell, 24(8), 1026–1038.Google Scholar
  8. 8.
    Thanh, M. N., Wu, Q. M. J., & Ahuja, S. (2010). An extension of the standard mixture model for image segmentation. IEEE Trans Neural Netw, 21(8), 1326–1338.CrossRefGoogle Scholar
  9. 9.
    M.N. Thanh and Q.M. J. Wu, “Gaussian-Mixture-Model-Based Spatial Neighborhood Relationships for Pixel Labeling Problem,” IEEE Trans. Syst. Man Cybern. B, vol. PP, no. 99, pp. 1–10, 2011.Google Scholar
  10. 10.
    Chatzis, S. P., & Varvarigou, T. A. (Oct. 2008). A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans Fuzzy Syst, 16(5), 1351–1361.Google Scholar
  11. 11.
    11 P. Clifford, “Markov Random Fields in Statistics,” in Disorder in Physical Systems. A Volume in Honour of John M. Hammersley on the Occasion of His 70th Birthday, G. Grimmett and D. Welsh, Eds. Oxford, U.K.: Clarendon Press, Oxford Science Publication, 1990.Google Scholar
  12. 12.
    Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE, 77(2), 257–286.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Brady, M., & Smith, S. (Jan. 2001). Segmentation of brain mr images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans Med Imag, 20(1), 45–57.Google Scholar
  14. 14.
    Dempster, P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via EM algorithm. J Roy Stat Soc B, 39(1), 1–38.Google Scholar
  15. 15.
    G.E.B. Archer and D.M. Titterington, “Parameter Estimation for Hidden Markov Chains,” J. Statistical Planning Inference, 2002.Google Scholar
  16. 16.
    16 J. Besag, “Statistical Analysis of Non-Lattice Data,” The Statistician, vol. 24, pp. 179–195, 1975.Google Scholar
  17. 17.
    Zhang, J., Modestino, J. W., & Langan, D. (July 1994). Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation. IEEE Trans Image Process, 3, 404–420.Google Scholar
  18. 18.
    McLachlan, G. J., & Krishnan, T. (1997). “The EM Algorithm and Extensions”, in Series in Probability and Statistics. New York: Wiley.Google Scholar
  19. 19.
    Zhou, Z., Leahy, R., & Qi, J. (1997). Approximate maximum likelihood hyperparameter estimation for Gibbs priors. IEEE Trans Image Process, 6(6), 844–861.CrossRefGoogle Scholar
  20. 20.
    Besag, J. (1986). On the statistical analysis of dirty pictures. J Roy Stat Soc B, 48, 259–302.Google Scholar
  21. 21.
    Qian, W., & Titterington, D. (1991). Estimation of parameters in hidden Markov models. Philos Trans Roy Soc London A, 337, 407–428.CrossRefGoogle Scholar
  22. 22.
    Zhang, J. (Jan. 1993). The mean field theory in em procedures for blind Markov random field image restoration. IEEE Trans Image Process, 2(1), 27–40.Google Scholar
  23. 23.
    Forbes, F., & Peyrard, N. (2003). Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans Pattern Anal Mach Intell, 25(9), 1089–1101.CrossRefGoogle Scholar
  24. 24.
    Sanjay, G. S., & Hebert, T. J. (1998). Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process, 7(7), 1014–1028.CrossRefGoogle Scholar
  25. 25.
    Diplaros, A., Vlassis, N., & Gevers, T. (2007). A spatially constrained generative model and an em algorithm for image segmentation. IEEE Trans Neural Netw, 18(3), 798–808.CrossRefGoogle Scholar
  26. 26.
    Blekas, K., Likas, A., Galatsanos, N. P., & Lagaris, I. E. (2005). A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw, 16(2), 494–498.CrossRefGoogle Scholar
  27. 27.
    Nikou, C., Galatsanos, N. P., & Likas, A. (2007). A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans Image Process, 16(4), 1121–1130.CrossRefGoogle Scholar
  28. 28.
    Nikou, C., Likas, A., & Galatsanos, N. P. (2010). A bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans Image Process, 19(9), 2278–2289.CrossRefGoogle Scholar
  29. 29.
    Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J Roy Stat Soc B, 36(2), 192–326.Google Scholar
  30. 30.
    M.N.M. van Lieshout, “Markovianity in Space and Time,” Dynamics and Stochastics: Festschrift in Honor of Michael Keane, pp. 154–167, 2006.Google Scholar
  31. 31.
  32. 32.
  33. 33.
  34. 34.
    Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. roc 8th IEEE Int Conf Comput Vis, Vancouver, BC, Canada, 2, 416–423.Google Scholar
  35. 35.
    Unnikrishnan, R., Pantofaru, C., & Hebert, M. (2005). A Measure for Objective Evaluation of Image Segmentation Algorithms. IEEE Conf Comput Vis Pattern Recognit, 3, 34–41.Google Scholar
  36. 36.
    R. Unnikrishnan and M. Hebert, “Measures of Similarity,” in Proc. IEEE Workshop Comput. Vis. Appl., pp. 394–400, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hui Zhang
    • 1
    • 3
    • 4
  • Tian Wen
    • 2
  • Yuhui Zheng
    • 1
    • 3
  • Danhua Xu
    • 1
    • 3
  • Dingcheng Wang
    • 1
    • 3
  • Thanh Minh Nguyen
    • 4
  • Q. M. Jonathan Wu
    • 1
    • 4
    Email author
  1. 1.School of Computer & SoftwareNanjing University of Information Science & TechnologyNanjingChina
  2. 2.JiangSu Provincial Center for Disease Prevention and ControlNanjingChina
  3. 3.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Department of Electrical and Computer EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations