Advertisement

Journal of Signal Processing Systems

, Volume 78, Issue 3, pp 283–297 | Cite as

A Real-Time Implementation of the Mobile WiMAX ARQ and Physical Layer

  • Pedro Suárez-Casal
  • Ángel Carro-LagoaEmail author
  • José A. García-Naya
  • Paula Fraga-Lamas
  • Luis Castedo
  • Antonio Morales-Méndez
Article
  • 309 Downloads

Abstract

This paper presents an innovative software-defined radio architecture for the real-time implementation of WiMAX transceivers. The architecture consists of commercially available field-programmable gate array and digital signal processor modules. We show how the architecture can be used for the real-time implementation of a full-featured standard-compliant time-division duplex WiMAX physical layer together with the ARQ functionality of the MAC layer. Both the mobile and the base station contain a transmitter and a receiver to enable real-time concurrent downlink and uplink communications. The design supports the different configurations defined by the standard and the WiMAX Forum. This work also provides the verification and validation of the proposed real-time implementation based on repeatable and reproducible performance evaluation considering the reference scenarios defined by the WiMAX Forum, including both static and mobile scenarios. Typical figures of merit such as physical-layer bit and frame error rates and MAC-layer throughput are obtained with the help of a custom-made real-time channel emulator implementing the channel models defined by the WiMAX Forum.

Keywords

IEEE 802.16e WiMAX Physical layer SDR FPGA DSP Downlink Uplink OFDMA ARQ 

Notes

Acknowledgments

This work has been partially supported by Indra Sistemas S.A. and the Spanish Ministry of Defence with the technical direction of PEC/ITM under grant DN8644-COINCIDENTE. The authors wish to thank J. M. Camas-Albar from Indra Sistemas S.A. for his help. This work has been additionally funded by Xunta de Galicia, Ministerio de Ciencia e Innovacin of Spain, and FEDER funds of the European Union under grants with numbers 2012/287, TEC2010-19545-C04-01, and CSD2008-00010.

References

  1. 1.
    OFDMA PHY SAP Interface Specification for 802.16 Broadband Wireless Access Base Stations. Tech. rep., Intel Corporation (2007).Google Scholar
  2. 2.
    IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface. IEEE Std 802.16m-2011(Amendment to IEEE Std 802.16-2009) (2011). doi: 10.1109/IEEESTD.2011.5765736.
  3. 3.
    IEEE Standard for Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2012 (Revision of IEEE Std 802.16-2009) (pp. 1–2542) (2012). doi: 10.1109/IEEESTD.2012.6272299.
  4. 4.
    IEEE Standard for Air Interface for Broadband Wireless Access Systems–Amendment 1: Enhancements to support machine-to-machine applications. IEEE Std 802.16p-2012 (Amendment to IEEE Std 802.16-2012) (pp. 1–82) (2012). doi: 10.1109/IEEESTD.2012.6327306.
  5. 5.
    IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16.1-2012 (pp. 1–1090) (2012). doi: 10.1109/IEEESTD.2012.6297413.
  6. 6.
    IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems Amendment 1: Enhancements to support machine-to-machine applications. IEEE Std 802.16.1b-2012 (Amendment to IEEE Std 802.16.1-2012) (pp. 1–126) (2012). doi: 10.1109/IEEESTD.2012.6328224.
  7. 7.
    Ansari, A., Rajput, A., Hashmani, M. (2009). WiMAX network optimization—analyzing effects of adaptive modulation and coding schemes used in conjunction with ARQ and HARQ. In Seventh annual communication networks and services research conference, 2009. CNSR ’09 (pp. 6–13). doi: 10.1109/CNSR.2009.12.
  8. 8.
    Carro-Lagoa, A., Suarez-Casal, P., Garcia-Naya, J., Fraga-Lamas, P., Castedo, L., Morales-Mendez, A. (2013). Design and implementation of an OFDMA-TDD physical layer for WiMAX applications. EURASIP Journal on Wireless Communications and Networking, 2013(1), 243. doi: 10.1186/1687-1499-2013-243. http://jwcn.eurasipjournals.com/content/2013/1/243.CrossRefGoogle Scholar
  9. 9.
    Chuang, G., Ting, P.A., Hsu, J.Y., Lai, J.Y., Lo, S.C., Hsiao, Y.C., Chiueh, T.D. (2011). A MIMO WiMAX SoC in 90nm CMOS for 300km/h mobility. In IEEE international solid-state circuits conference digest of technical papers (ISSCC), 2011 (pp. 134–136). doi: 10.1109/ISSCC.2011.5746252.
  10. 10.
    Colda, R., Palade, T., Pucchita, E., Vermecan, I., Moldovan, A. (2010). Mobile WiMAX: system performance on a vehicular multipath channel. In Proceedings of the fourth european conference on antennas and propagation (EuCAP), 2010(pp. 1–5).Google Scholar
  11. 11.
    Cox, R., & Sundberg, C. (1994). An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes. IEEE Transactions on Vehicular Technology, 43(1), 57–68. doi: 10.1109/25.282266.CrossRefGoogle Scholar
  12. 12.
    Hempel, M., Wang, W., Sharif, H., Zhou, T., Mahasukhon, P. (2008). Implementation and performance evaluation of Selective Repeat ARQ for WiMAX NS-2 model. In 33rd IEEE conference on local computer networks, 2008. LCN 2008 (pp. 230–235). doi: 10.1109/LCN.2008.4664174.
  13. 13.
    Hu, S., Wu, G., Guan, Y.L., Law, C.L., Yan, Y., Li, S. (2007). Development and performance evaluation of mobile WiMAX testbed. In IEEE mobile WiMAX symposium, 2007 (pp. 104–107). doi: 10.1109/WIMAX.2007.348688.
  14. 14.
    Imperatore, P., Salvadori, E., Chlamtac, I. (2007). Path loss measurements at 3.5 GHz: a trial test WiMAX based in rural environment. In 3rd international conference on testbeds and research infrastructure for the development of networks and communities, 2007. TridentCom 2007 (pp. 1–8). doi: 10.1109/TRIDENCOM.2007.4444709.
  15. 15.
    Chang, K.-C., Lin, J.-W., Chiueh, T.D. (2007). Design of a downlink baseband receiver for IEEE 802.16E OFDMA mode in high mobility. In IEEE international SOC conference, 2007 (pp. 301–304).Google Scholar
  16. 16.
    Lai, H., & Boumaiza, S. (2008). WiMAX baseband processor implementation and validation on a FPGA/DSP platform. In Canadian conference on electrical and computer engineering, 2008. CCECE 2008 (pp. 001,449–001,452). doi: 10.1109/CCECE.2008.4564781.
  17. 17.
    Latkoski, P., & Popovski, B. (2009). Delay and throughput analysis of IEEE 802.16 ARQ mechanism. In International conference on wireless and optical communications networks, 2009. WOCN ’09. IFIP (pp. 1–5). doi: 10.1109/WOCN.2009.5010534.
  18. 18.
    Mahmoud, H., Arslan, H., Ozdemir, M. (2006). Initial ranging for WiMAX (802.16e) OFDMA. In IEEE military communications conference, 2006. MILCOM 2006 (pp. 1–7). doi: 10.1109/MILCOM.2006.302240.
  19. 19.
    Mehlführer, C., Caban, S., Rupp, M. (2008). Experimental evaluation of adaptive modulation and coding in MIMO WiMAX with limited feedback. EURASIP Journal on Advances in Signal Processing, 2008. doi: 10.1155/2008/837102.
  20. 20.
    Mohamed, M.A., Zaki, F.W., Mosbeh, R.H. (2010). Simulation of WiMAX Physical Layer: IEEE 802.16e. IJCSNS International Journal of Computer Science and Network Security,10(11).Google Scholar
  21. 21.
    Ohseki, T., Morita, M., Inoue, T. (2007). Burst construction and packet mapping scheme for OFDMA Downlinks in IEEE 802.16 Systems. In IEEE global telecommunications conference, 2007. GLOBECOM ’07 (pp. 4307–4311). doi: 10.1109/GLOCOM.2007.819.
  22. 22.
    Pareit, D., Lannoo, B., Moerman, I., Demeester, P. (2012). The history of WiMAX: a complete survey of the evolution in certification and standardization for IEEE 802.16 and WiMAX. IEEE Communications Surveys Tutorials, 14(4), 1183–1211. doi: 10.1109/SURV.2011.091511.00129.CrossRefGoogle Scholar
  23. 23.
    Pareit, D., Petrov, V., Lannoo, B., Tanghe, E., Joseph, W., Moerman, I., Demeester, P., Martens, L. (2010). A throughput analysis at the MAC Layer of Mobile WiMAX. In IEEE wireless communications and networking conference (WCNC), 2010 (pp. 1–6). doi: 10.1109/WCNC.2010.5506379.
  24. 24.
    Sayenko, A., Tykhomyrov, V., Martikainen, H., Alanen, O. (2007). Performance analysis of the IEEE 802.16 ARQ mechanism. In Proceedings of the 10th ACM symposium on modeling, analysis, and simulation of wireless and mobile systems, MSWiM ’07 (pp. 314–322). New York: ACM. doi: 10.1145/1298126.1298180.
  25. 25.
    Schmidl, T., & Cox, D. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621. doi: 10.1109/26.650240.CrossRefGoogle Scholar
  26. 26.
    So-In, C., Jain, R., Tamimi, A.K. (2009). Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. IEEE Journal on Selected Areas in Communications, 27(2), 156–171. doi: 10.1109/JSAC.2009.090207.CrossRefGoogle Scholar
  27. 27.
    Suárez-Casal, P., Carro-Lagoa, A., García-Naya, J., Castedo, L. (2010). A multicore SDR architecture for reconfigurable WiMAX Downlink. In 13th Euromicro conference on digital system design: architectures, methods and tools (DSD), 2010 (pp. 801–804). doi: 10.1109/DSD.2010.108.
  28. 28.
    Wu, M., Wu, F., Xie, C. (2008). The design and implementation of WiMAX base station MAC based on Intel Network Processor. In International conference on embedded software and systems symposia, 2008. ICESS Symposia ’08 (pp. 350–354). doi: 10.1109/ICESS.Symposia.2008.46.
  29. 29.
    Wu, Y.J., Lin, J.M., Yu, H.Y., Ma, H.P. (2009). A baseband testbed for uplink mobile MIMO WiMAX communications. In IEEE international symposium on circuits and systems, 2009. ISCAS 2009 (pp. 794–797). doi: 10.1109/ISCAS.2009.5117874.
  30. 30.
    Zaggoulos, G., Tran, M., Nix, A. (2008). Mobile WiMAX system performance—simulated versus experimental results. In IEEE 19th international symposium on personal, indoor and mobile radio communications, 2008. PIMRC 2008 (pp. 1–5). doi: 10.1109/PIMRC.2008.4699670.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pedro Suárez-Casal
    • 1
  • Ángel Carro-Lagoa
    • 1
    Email author
  • José A. García-Naya
    • 1
  • Paula Fraga-Lamas
    • 1
  • Luis Castedo
    • 1
  • Antonio Morales-Méndez
    • 2
  1. 1.Department of Electronics and SystemsUniversity of A Coruña, Facultade de InformáticaA CoruñaSpain
  2. 2.Indra Sistemas, S.A.AranjuezSpain

Personalised recommendations