Journal of Signal Processing Systems

, Volume 73, Issue 3, pp 255–266 | Cite as

A Novel Mitigation Scheme for JTIDS Impulsive Interference on LDACS System Based on Sensing and Symbol Retransmission

  • Giulio Bartoli
  • Romano Fantacci
  • Dania MarabissiEmail author
  • Luigia Micciullo
  • Claudio Armani
  • Roberto Merlo


Future digital air/ground communication systems (LDACS) will operate on the L-Band where the coexistence with existing legacy systems shall be guaranteed. This paper proposes a scheme to detect and mitigate the JTIDS impulsive interference on LDACS-1 system. The novel idea advised here is the transmission of two copies of the symbols received with interference that are suitably combined at the receiver after a blanking operation of the corrupted samples. In particular two alternatives are presented that differ for the adopted retransmission policy, namely full combining scheme, where all the symbols are transmitted twice, and partial combining scheme, which foresees the retransmission of only those symbols where interference has been detected. Both these methods permit to efficiently remove the interference without affecting the useful information and exploiting profitably the diversity gain against noise through the soft combining approach. The numerical results provided in the paper highlight a good behavior of the proposed methods and significant advantages in comparison with the traditional blanking method, either in terms of Bit Error Rate and throughput.


JTIDS LDACS Spectrum sensing Blanking Symbol recombining 


  1. 1.
    ICAO (2007). Communications operating concept and requirements for the future radio system. ICAO Aeronautical Communications panel. Version 2. Montreal, May 2007.Google Scholar
  2. 2.
    SESAR Joint Undertaking. Available:
  3. 3.
    Nextgen project. Available:
  4. 4.
    Bartoli, G., Fantacci, R., Marabissi, D., Micciullo, L., Fossi, M. (2013). An efficient subcarrier allocation method for AeroMACS based communication systems. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 786–797.Google Scholar
  5. 5.
    EUROCONTROL web site.
  6. 6.
    Budsabathon, M., & Hara, S. (2001). Robustness of OFDM signal against temporally localized impulsive noise. In Proceedings VTC 2001 fall vehicular technology conference IEEE VTS 54th, 3, 1672–1676.Google Scholar
  7. 7.
    Ghosh, M. (1996). Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Transaction on communications, 44(2), 145–147.CrossRefGoogle Scholar
  8. 8.
    Epple, U., & Schnell, M. (2011). Overview of interference situation and mitigation techniques for LDACS1. In Proceedings IEEE/AIAA 30th digital avionics systems conference (DASC).Google Scholar
  9. 9.
    Zhidkov, S.V. (2008). Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers. IEEE Transaction on Communications, 56(1), 5–9.CrossRefGoogle Scholar
  10. 10.
    Zhidkov, S.V. (2006). Performance analysis and optimization of OFDM receiver with blanking nonlinearity in impulsive noise environment. IEEE Transaction on Vehicular Technology, 55(1), 234–242.CrossRefGoogle Scholar
  11. 11.
    Yong-Hwa, K., Kyong-Hoe, K., Hui-Myoung, O., Kwan-Ho, K., Seong-Cheol, K. (2008). Mitigation of effect of impulsive noise for OFDM systems over power line channels. In Proceedings IEEE International symposium power line communications and its applications ISPLC (pp. 386–390).Google Scholar
  12. 12.
    Marabissi, D., Fantacci, R., Papini, S. (2006). Robust Multiuser interference cancellation for OFDM systems with frequency offset. IEEE Transaction on Wireless Communications, 5, 3068–3076.CrossRefGoogle Scholar
  13. 13.
    Yih, C.-H. (2012). Iterative interference cancellation for OFDM signals with blanking nonlinearity in impulsive noise channels. IEEE Signal Processing Letter, 19(3), 147–150.CrossRefGoogle Scholar
  14. 14.
    Haring, J., & Vinck, A.J.H. (2003). Iterative decoding of codes over complex numbers for impulsive noise channels. IEEE Transaction on Information Theory, 49(5), 1251–1260.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhidkov, S.V. (2003). Impulsive noise suppression in OFDM-based communication systems. IEEE Consumer Electronic, 49(4), 944–948.CrossRefGoogle Scholar
  16. 16.
    Armstrong, J., & Suraweera, H.A. (2004). Impulse noise mitigation for OFDM using decision directed noise estimation. In IEEE international symposium spread spectrum techniques and applications (pp. 174–178).Google Scholar
  17. 17.
    Kitamura, T., Ohno, K., Itami, M. (2011). Iterative impulsive noise reduction by generating its replica signal in OFDM reception. In Proceedings IEEE international consumer electronics (ICCE) conference (pp. 389–390).Google Scholar
  18. 18.
    Al-Dweik, A., Hazmi, A., Sharif, B., Tsimenidis, C. (2010). Efficient interleaving technique for OFDM system over impulsive noise channels. In Proceedings IEEE 21st international personal indoor and mobile radio communications (PIMRC) symposium (pp. 167–171).Google Scholar
  19. 19.
    Ghasemi, A., & Sousa, E.S. (2008). Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Communications Magazine, 32–39.Google Scholar
  20. 20.
    Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRefGoogle Scholar
  21. 21.
    Digham, F.F., Alouini, M.S., Simon, M.K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transaction on Communications, 55(1), 21–24.CrossRefGoogle Scholar
  22. 22.
    Cheng, J.-F. (2006). Coding performance of hybrid ARQ schemes. IEEE Transaction on Communications, 54(6), 1017–1029.CrossRefGoogle Scholar
  23. 23.
    Fantacci, R. (1990). Performance evaluation of efficient continuous ARQ protocols. IEEE Transaction on Communications, 38(6), 773–781.CrossRefGoogle Scholar
  24. 24.
    SESAR 15.2.4 ET - Task EWA04-1 T2 (2011). Updated LDACS1 system specification. Aug. 2011.Google Scholar
  25. 25.
    JTIDS System Segment Specification (DCB79S4000C).Google Scholar
  26. 26.
    European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) (2009). A comparison of the minimum coupling loss method, enhanced minimum coupling loss method, and the Monte-Carlo simulation.Google Scholar
  27. 27.
    ITU-R. Recommendation SM.337-4 Frequency and Distance Separations.Google Scholar
  28. 28.
    ITU-R. Recommendation SM.329-10 Unwanted emission in spurious domain.Google Scholar
  29. 29.
    Bartoli, G., Fantacci, R., Marabissi, D., Micciullo, L., Armani, C., Merlo, R. (2012). Performance evaluation of a spectrum-sensing technique for LDACS and JTIDS coexistence in L-Band. In Proceeding SDR’12—WInnComm-Europe—Wireless innovation forum announces.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giulio Bartoli
    • 1
  • Romano Fantacci
    • 1
  • Dania Marabissi
    • 1
    Email author
  • Luigia Micciullo
    • 1
  • Claudio Armani
    • 2
  • Roberto Merlo
    • 2
  1. 1.Department of Information EngineeringUniversity of FirenzeFirenzeItaly
  2. 2.Selex ES SpAGenovaItaly

Personalised recommendations