Journal of Signal Processing Systems

, Volume 71, Issue 3, pp 297–312 | Cite as

Local Interpolation-based Polar Format SAR: Algorithm, Hardware Implementation and Design Automation

  • Qiuling Zhu
  • Christian R. Berger
  • Eric L. Turner
  • Larry Pileggi
  • Franz Franchetti


In this paper we present a local interpolation-based variant of the well-known polar format algorithm used for synthetic aperture radar (SAR) image formation. We develop the algorithm to match the capabilities of the application-specific logic-in-memory processing paradigm, which off-loads lightweight computation directly into the SRAM and DRAM. Our proposed algorithm performs filtering, an image perspective transformation, and a local 2D interpolation, and supports partial and low-resolution reconstruction. We implement our customized SAR grid interpolation logic-in-memory hardware in advanced 14 nm silicon technology. Our high-level design tools allow to instantiate various optimized design choices to fit image processing and hardware needs of application designers. Our simulation results show that the logic-in-memory approach has the potential to enable substantial improvements in energy efficiency without sacrificing image quality.


Synthetic aperture radar Logic in memory Chip generator 


  1. 1.
    Carrara, W., Goodman, R., Majewski, R. (1995). Spotlight synthetic aperture radar: Signal processing algorithms. Artech House.Google Scholar
  2. 2.
    McFarlin, D., Franchetti, F., Püschel, M., Moura, J. (2009). High performance synthetic aperture radar image formation on commodity multicore architectures. In SPIE.Google Scholar
  3. 3.
    Zhu, Q., Turnerz, E.L., Bergery, C.R., Pileggi, L., Franchetti, F. (2011). Application-specific logic-in-memory for polar format synthetic aperture radar. In HPEC.Google Scholar
  4. 4.
    Zhu, Q., Bergery, C.R., Turnerz, E.L., Pileggi, L., Franchetti, F. (2012). Polar format synthetic aperture radar in energy efficient application-specific logic-in-memory. In ICASSP.Google Scholar
  5. 5.
    Morris, D., Rovner, V., Pileggi, L., Strojwas, A., Vaidyanathan, K. (2010). Enabling application-specific integrated circuits on limited pattern constructs. In Symp. VLSI technology.Google Scholar
  6. 6.
    Morris, D., Vaidyanathan, K., Lafferty, N., Lai, K., Liebmann, L., Pileggi, L. (2011). Design of embedded memory and logic based on pattern constructs. In Symp. VLSI technology.Google Scholar
  7. 7.
    Kogge, P.M., Sunaga, T., Miyataka, H., Kitamura, K., Retter, E. (1995). Combined DRAM and logic chip for massively parallel systems. In Conf. advanced research in VLSI.Google Scholar
  8. 8.
    Brockman, J.B., Kogge, P.M. (1997). The case for processing-in-memory. IEEE Computer.Google Scholar
  9. 9.
    Shacham, O., Azizi, O., et al. (2010) Rethinking digital design: Why design must change. IEEE Micro, 30(6): 9–24.CrossRefGoogle Scholar
  10. 10.
    Shacham, O. (2011). Chip multiprocessor generator: automatic generation of custom and heterogeneous compute platforms. PhD thesis, Stanford.Google Scholar
  11. 11.
    Rudin, J. (2007). Implementation of Polar Format SAR Image Formation on the IBM Cell Broadband Engine. In Proc. HPEC.Google Scholar
  12. 12.
    Kestur, S., Park, S., Irick, K., Maashri, A., Narayanan, V. (2010). Accelerating the nonuniform fast fourier transform using FPGAs. In FCCM.Google Scholar
  13. 13.
    Kestur, S., Irick, K., Park, S., Maashri, A., Narayanan, V., Chakrabari, C. (2011). An Algorithm-Architecture Co-design Framework for Gridding Reconstruction using FPGAs. In DAC.Google Scholar
  14. 14.
    Sorensen, T., Schaeffter, T., Noe, K., Hansen, M. (2008). Accelerating the nonequispaced fast fourier transform on commodity graphics hardware. In IEEE tran. on medical imaging.Google Scholar
  15. 15.
    Che, S., Li, J., Sheaffer, J.W., Skadron, K., Lach, J. (2008). Accelerating compute-intensive applications with GPUs and FPGA. In SASP.Google Scholar
  16. 16.
    Kuon, I., Rose, J. (2007). Measuring the Gap between FPGAs and ASICs. In IEEE transactions on computer-aided design of integrated circuits and systems.Google Scholar
  17. 17.
    Wolberg, G. (1990) Digital image warping (systems). IEEE Computer Society Press.Google Scholar
  18. 18.
    Lyons, R. (2004). Understanding digital signal processing. Prentice Hall.Google Scholar
  19. 19.
    Noetzel, A.S. (1989) An interpolating memory unit for function evaluation: analysis and design. IEEE Transactions on Computers, 38(3), 377–384.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Meijering, E. (2002). A chronology of interpolation: from ancient astronomy to modern signal and image processing. In Proceedings of the IEEE (pp. 319–342).Google Scholar
  21. 21.
    Williams, L. (1983) Pyramidal parametrics. Computer Graphics, 17(3).Google Scholar
  22. 22.
    Atkinson, K.A. (1988). An introduction to numerical analysis. Wiley.Google Scholar
  23. 23.
    Murachi, Y., Kamino, T., Miyakoshi, J., Kawaguchi, H., Yoshimoto, M. (2007). A power-efficient SRAM core architecture with segmentation-free and rectangular accessibility for super-parallel video processing. (Vol. 107 pp. 47–52): IEICE Tech. Rep.Google Scholar
  24. 24.
    Shacham, O., et al. (2012). Genesis2 chip generator interactive GUI:
  25. 25.
    Solomatnikov, A., Firoozshahian, A., Qadeer, W., Shacham, O., Kelley, K., Asgar, Z., Wachs, M., Hameed, R., Horowitz, M. (2007). Chip multi-processor generator.Google Scholar
  26. 26.
    Zhu, Q.L., Vaidyanathan, K., Shachamy, O., Horowitz, M., Pileggi, L., Franchetti, F. (2012). Design automation framework for application-specific logic-in-memory blocks.Google Scholar
  27. 27.
    Brooks, D., Tiwari, V. (2000). Wattch: a framework for architectural-level power analysis and optimizations.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Qiuling Zhu
    • 1
  • Christian R. Berger
    • 1
  • Eric L. Turner
    • 1
  • Larry Pileggi
    • 1
  • Franz Franchetti
    • 1
  1. 1.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations