Journal of Signal Processing Systems

, Volume 67, Issue 3, pp 279–290 | Cite as

A Flexible PCB Inspection System Based on Statistical Learning

Article

Abstract

With the large variations in appearance for different kinds of defects in Printed Circuit Boards (PCBs), conventional rule-based inspection algorithms become insufficient for detecting and classifying defects. In this study, an automated PCB inspection system based on statistical learning strategies is developed. First, the partial Hausdorff distance is used to ascertain the positions of defects. Next, the defect patterns are categorized using the Support Vector Machine (SVM) classifier. Defects without regularities in appearance, which cannot be categorized, are identified through the regional defectiveness by comparing the block-wise probability distributions. Experimental results on a real visual inspection platform show that the proposed system is very effective for inspecting a variety of PCB defects.

Keywords

PCB SVM Automated visual inspection Image classification Defect classification Image alignment 

References

  1. 1.
    Moganti, M., Ercal, F., Dagli, C. H., & Tsunekawa, S. (1996). Automatic PCB inspection algorithms: a survey. Computer Vision and Image Understanding, 63(2), 287–313.CrossRefGoogle Scholar
  2. 2.
    Chin, R. T., & Harlow, C. A. (1982). Automated visual inspection: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(6), 557–573.CrossRefGoogle Scholar
  3. 3.
    Chin, R. T. (1988). Automated visual inspection: 1981 to 1987. Computer Vision, Graphics, and Image Processing, 41(3), 346–381.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Newman, T. S., & Jain, A. K. (1995). A survey of automated visual inspection. Computer Vision and Image Understanding, 61(2), 231–262.CrossRefGoogle Scholar
  5. 5.
    Akiyarnai, Y., Hara, N., & Karasaki, K. (1983). Automation inspection for printed circuit board. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 623–630.CrossRefGoogle Scholar
  6. 6.
    Tominaga, S. (1991). Surface identification using the dichromatic reflection model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 658–670.CrossRefGoogle Scholar
  7. 7.
    Spence, H. F. (1993). Printed circuit board diagnosis using artificial neural networks and circuit magnetic fields. In Proc. IEEE Systems Readiness Technology Conference, pp. 41–45.Google Scholar
  8. 8.
    Hodges, S. E., & Richards, R. J. (1995). Fast multi-resolution image processing for PCB manufacture. IEE Colloquium on Multi-resolution Modeling and Analysis in Image Processing and Computer Vision, pp. 1–8.Google Scholar
  9. 9.
    Scaman, M. E., & Economikos, L. (1995). Computer vision for automatic inspection of complex metal patterns on multichip modules (MCD-M). IEEE Transactions on Components, Packaging and Manufacturing Technology, 18(4), 675–684.CrossRefGoogle Scholar
  10. 10.
    Wu, W. Y., Wang, M.-J. J., & Liu, C. M. (1996). Automated inspection of printed circuit boards through machine vision. Computers in Industry, 28(2), 103–111.CrossRefGoogle Scholar
  11. 11.
    Loh, H. H., & Lu, M. S. (1999). Printed circuit board inspection using image analysis. IEEE Transactions on Industry Applications, 35(2), 426–432.CrossRefGoogle Scholar
  12. 12.
    Kim, N. H., Pyun, J. Y., Choi, K. S., Choi, B. D., & Ko, S. J. (2001). Real-time inspection system for printed circuit boards. In Proc. 6th IEEE Int. Symp. Industrial Electronics, pp. 12–16.Google Scholar
  13. 13.
    Tominaga, S., & Okamoto, S. (2003). Reflectance-based material classification for printed circuit boards. In Proc. 12th Int. Conf. Image Analysis and Processing, pp. 238–243.Google Scholar
  14. 14.
    Ibrahim, Z., & Al-Attas, S. A. R. (2004). Wavelet-based printed circuit board inspection system. International Journal of Signal Processing, 1(1), 73–79.Google Scholar
  15. 15.
    Garcia, H. C., Villalobos, J. R., & Runger, G. C. (2006). An automated feature selection method for visual inspection systems. IEEE Transactions on Automation Science and Engineering, 3(4), 394–406.CrossRefGoogle Scholar
  16. 16.
    Acciani, G., Brunetti, G., & Fornarelli, G. (2006). Application of neural networks in optical inspection and classification of solder joints in surface mount technology. IEEE Transactions on Industrial Informatics, 2(3), 200–209.CrossRefGoogle Scholar
  17. 17.
    Chang, P. C., Chen, L. Y., & Fan, C. Y. (2008). A case-based evolutionary model for defect feature segmentation of printed circuit board images. Journal of Intelligent Manufacturing, 19(2), 203–214.CrossRefGoogle Scholar
  18. 18.
    Huttenlocher, D., Klanderman, G., & Rucklidge, W. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.CrossRefGoogle Scholar
  19. 19.
    Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.MATHGoogle Scholar
  20. 20.
    Vapnik, V. (1998). Statistical learning theory. Chichester: Wiley.MATHGoogle Scholar
  21. 21.
    Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press.Google Scholar
  22. 22.
    Bazaraa, M., & Shetty, C. M. (1979). Nonlinear programming. New York: Wiley.MATHGoogle Scholar
  23. 23.
    Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAG’s for multiclass classification. Adv. Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press.Google Scholar
  24. 24.
    Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multi-class SVMs. IEEE Transactions on Neural Networks, 13(2), 415–425.CrossRefGoogle Scholar
  25. 25.
    Wu, T. F., Lin, C. J., & Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine learning Research, 5, 975–1005.MathSciNetMATHGoogle Scholar
  26. 26.
    Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley.Google Scholar
  27. 27.
    Gonzalez, R. C., & Woods, R. E. (2001). Digital image processing (2nd edn.). Prentice Hall.Google Scholar
  28. 28.
    Benhabib, B., Charette, C. R., Smith, K. C., & Yip, A. M. (1990). Automatic visual inspection of printed circuit boards: an experimental system. International Journal of Robotics & Automation, 5(2), 1034–1044.Google Scholar
  29. 29.
    Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record, Part 4 (pp. 96–104). New York: IRE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations