Journal of Signal Processing Systems

, Volume 65, Issue 3, pp 325–338 | Cite as

Min-max Extrapolation Scheme for Fast Estimation of 3D Potts Field Partition Functions. Application to the Joint Detection-Estimation of Brain Activity in fMRI

  • Laurent Risser
  • Thomas Vincent
  • Florence Forbes
  • Jérôme Idier
  • Philippe Ciuciu


In this paper, we propose a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated, deactivated and inactivated brain regions and to estimate region-dependent hemodynamic filters. For any brain region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to prespecified regions. Then, we propose an extrapolation method that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with preexisting methods either based on a path-sampling strategy or mean-field approximations, our contribution strongly alleviates the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions.


Markov random field Potts fields Partition function fMRI Bayesian inference MCMC Detection-estimation 


  1. 1.
    Risser, L., Vincent, T., Ciuciu, P., & Idier, J. (2009). Robust extrapolation scheme for fast estimation of 3D Ising field partition functions. Application to within subject fMRI data analysis. In 12th Proc. MICCAI, LNCS (Vol. 5761, pp. 975-983). London, UK.Google Scholar
  2. 2.
    Vincent, T., Risser, L., & Ciuciu, P. (2010). Spatially adaptive mixture modeling for analysis of fmri time series. IEEE Transactions on Medical Imaging, 29(4), 1059–1074.CrossRefGoogle Scholar
  3. 3.
    Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., & Poline, J.-B. (2006). Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Human Brain Mapping, 27(8), 678–693.CrossRefGoogle Scholar
  4. 4.
    Hammersley, J. M., & Clifford, P. (1990). Markov random fields in statistics. In G. R. Grimmett & D. J. A. Welsh (Eds.), Disorder in physical systems: A volume in honour of John M. Hammersley (pp. 19–32). Oxford University Press.Google Scholar
  5. 5.
    Meng, X. L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6, 831–860.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jerrum, M., & Sinclair, A. (1993) Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing, 22, 1087–1116.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Trillon, A., Idier, J., & Peureux, P. (2008). Unsupervised Bayesian 3D reconstruction for non-destructive evaluation using gammagraphy. In EUSIPCO 16th European Signal Processing Conference. Lausanne, Switzerland.Google Scholar
  9. 9.
    Forbes, F., & Peyrard, N. (2003). Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1089–1101.CrossRefGoogle Scholar
  10. 10.
    Swendsen, R. H. & Wang, J. S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters, 58, 86–88.CrossRefGoogle Scholar
  11. 11.
    Risser, L., Idier, J., Ciuciu, P., & Vincent, T. (2009). Fast bilinear extrapolation of 3D ISING field partition function. Application to fMRI image analysis. In Proc. IEEE ICIP. Cairo, Egypt.Google Scholar
  12. 12.
    Onsager, L. (1944). A two-dimensional model with an order-disorder transition. Physical Review, 65(3&4), 117–149.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Higdon, D. M., Bowsher, J. E., Johnson, V. E., Turkington, T. G., Gilland, D. R., & Jaszczak, R. J. (1997). Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Transactions on Medical Imaging, 16(5), 516–526.CrossRefGoogle Scholar
  14. 14.
    Vincent, T., Ciuciu, P., & Idier, J. (2007). Spatial mixture modelling for the joint detection-estimation of brain activity in fMRI. In 32th Proc. IEEE ICASSP (Vol. I, pp. 325–328). Honolulu, Hawaii.Google Scholar
  15. 15.
    Makni, S., Idier, J., Vincent, T., Thirion, B., Dehaene-Lambertz, G., & Ciuciu, P. (2008). A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. NeuroImage, 41(3), 941–969.CrossRefGoogle Scholar
  16. 16.
    Ciuciu, P., Poline, J.-B., Marrelec, G., Idier, J., Pallier, Ch., & Benali, H. (2003). Unsupervised robust non-parametric estimation of the hemodynamic response function for any fMRI experiment. IEEE Transactions on Medical Imaging, 22(10), 1235–1251.CrossRefGoogle Scholar
  17. 17.
    Higdon, D. M. (1998). Auxiliary variable methods for Markov chain Monte Carlo with applications. Journal of the American Statistical Association, 93(442), 585–595.zbMATHCrossRefGoogle Scholar
  18. 18.
    Green, P. J. & Richardson, S. (2002). Hidden Markov models and desease mapping. Journal of the American Statistical Association, 97(460), 1–16.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Smith, M., Pütz, B., Auer, D., & Fahrmeir, L. (2003). Assessing brain activity through spatial Bayesian variable selection. NeuroImage, 20, 802–815.CrossRefGoogle Scholar
  20. 20.
    Smith, D., & Smith, M. (2006). Estimation of binary Markov random fields using Markov Chain Monte Carlo. Journal of Computational and Graphical Statistics, 15(1), 207–227.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chandler, D. (1987). Introduction to modern statistical mechanics (1st Ed). USA: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laurent Risser
    • 1
    • 2
    • 3
    • 4
  • Thomas Vincent
    • 1
    • 2
  • Florence Forbes
    • 5
  • Jérôme Idier
    • 3
  • Philippe Ciuciu
    • 1
    • 2
  1. 1.NeuroSpin/CEAGif-sur-YvetteFrance
  2. 2.IFR 49Institut d’Imagerie NeurofonctionnelleParisFrance
  3. 3.IRCCyN/CNRSNantesFrance
  4. 4.Imperial CollegeInstitute for Mathematical SciencesLondonUK
  5. 5.INRIA Rhônes-AlpesMontbonnotFrance

Personalised recommendations