Journal of Signal Processing Systems

, Volume 61, Issue 3, pp 375–386 | Cite as

Parabolic Motion-Vector Re-estimation Algorithm for Compressed Video Downscaling

  • Chia-Hung YehEmail author
  • Ying H. Chen
  • Ming-Chieh Chi
  • Mei-Juan Chen


For multimedia communications, there is a need to downscale a video prior to transmission because of the limitation of the bandwidth of a channel, and/or the different standards between transcoders. However, performing motion estimation in the downscaled video is computational intensive. In this paper, a parabolic motion vector re-estimation (PMVR) algorithm is proposed to predict motion vectors of the downscaled video. The proposed algorithm can significantly reduce computational complexity with slight PSNR degradation, in comparison with full search algorithm. Experimental results show that, with few additional computation, the proposed algorithm achieves a much higher quality than several existing algorithms.


Motion estimation Motion vector re-estimation Video transcoding Video downscaling 


  1. 1.
    ITU Recommendation H.261: “Video codec for audio visual services at P×64 kbits/s,” Mar. 1993.Google Scholar
  2. 2.
    ITU Telecom. Standardization Sector of ITU: “Video coding for low bitrate communication,” ITU-T Recommendation H.263 Version 2, Jan. 1998.Google Scholar
  3. 3.
    ITU-T: “H.26L test model long term number 8(TML-8) draft0” International Telecommunication Union, July 2001.Google Scholar
  4. 4.
    ITU-T Rec. H.264/ISO/IEC 11496-10: “Advanced video coding,” Final Committee Draft, Document JVT-E022, Sept. 2002.Google Scholar
  5. 5.
    ISO/IEC 11172, “Coding of motion pictures ad associated audio for digital storage media at up 1.5Mbit/s,” (MPEG-1).Google Scholar
  6. 6.
    ISO/IEC CD 13818, “Generic Coding of motion pictures ad associated Audio,” (MPEG-2).Google Scholar
  7. 7.
    Chi, M.-C., Yeh, C.-H., & Chen, M.-J. (2009). Robust region-of-interest determination based on user attention model through visual rhythm analysis. IEEE Transactions on Circuits and Systems for Video Technology, 19(8), 1025–1038.CrossRefGoogle Scholar
  8. 8.
    Youn, J., Sun, M.-T., & Lin, C.-W. (1999). Motion vector refinement for high-performance transcoding. IEEE Transactions on Multimedia, 1(1), 30–40.CrossRefGoogle Scholar
  9. 9.
    Chen, M.-J., Chu, M.-C., & Pan, C.-W. (2002). Efficient motion estimation algorithm for reduced frame-rate video transcoder. IEEE Transactions on Circuits and Systems for Video Technology, 12(4), 269–275.CrossRefGoogle Scholar
  10. 10.
    Hsu, C.-T., Yeh, C. H., Chen, C.-Y., & Chen, M. J. (2009). Arbitrary frame rate transcoding through temporal and spatial complexity analysis. IEEE Transactions on Broadcasting, 55(4), 767–775.CrossRefGoogle Scholar
  11. 11.
    Bhaskaran, V., & Konstantinides, K. (1995). Image and video compression standard, algorithms and architectures. Boston: Kluwer Academic.Google Scholar
  12. 12.
    Sullivan, G. J., & Wiegand, T. (1998). Rate distortion optimization for video compression. IEEE Signal Processing Magazine, 15, 74–90.CrossRefGoogle Scholar
  13. 13.
    Kuo, C.-J., Yeh, C.-H., & Odeh, S.-F. (2000). Polynomial search algorithm for motion estimation. IEEE Transactions on Circuit and System for Video Technology, 10, 813–818.CrossRefGoogle Scholar
  14. 14.
    Yeh, C.-H., Wu, M.-T., & Chern, S.-J. (2008). Correlation-based partial distortion search algorithm for fast motion estimation. Optical Engineering, 47(7), 077003-1–077003-6.CrossRefGoogle Scholar
  15. 15.
    Yeh, C.-H., Wu, M.-T., & Chern, S.-J. (2009). Coarse-to-fine partial distortion search algorithm for fast motion estimation. International Journal of Innovative Computing Information and Control, 5(9), 2523–2530.Google Scholar
  16. 16.
    Xin, J., Lin, C.-W., & Sun, M.-T. (2005). Digital video transcoding. Proceedings of the IEEE, 93(1), 84–97.CrossRefGoogle Scholar
  17. 17.
    Shanableh, T., & Ghanbari, M. (2000). Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats. IEEE Transactions on Multimedia, 2(2), 101–110.CrossRefGoogle Scholar
  18. 18.
    Bjork, N., & Christopoulos, C. (1998). Transcoder architecture for video coding. IEEE Transactions on Consumer Electronics, 44, 88–98.CrossRefGoogle Scholar
  19. 19.
    Shen, B., Sethi, I. K., & Bhaskaran, V. (1999). Adaptive motion-vector resampling for compressed video downscaling. IEEE Transactions on Circuits and Systems for Video Technology, 9, 929–936.CrossRefGoogle Scholar
  20. 20.
    Jang, S. H., & Jayant, N. (2003). An adaptive non-linear motion vector resampling algorithm for downscaling video transcoding. Proceedings of IEEE International Conference on Multimedia and Expo., 2, 229–232.Google Scholar
  21. 21.
    Wong, J. W. C., Au, O., Wong, H. W., & Tourapis, A. (1998). Predictive motion estimation for reduced-resolution video from high-resolution compressed video. Proceedings of IEEE International Conferences on Image Processing, 2, 461–464.Google Scholar
  22. 22.
    Chen, M.-J., Chu, M.-C., & Lo, S.-Y. (2001). Motion vector composition algorithm for spatial scalability in compression video. IEEE Transactions on Consumer Electronics, 47(4), 318–325.Google Scholar
  23. 23.
    Hsu, C.-T., & Chen, M.-J. (2006). Efficient motion vector composition algorithm by activity measurement for downscaled video transcoder. IEICE Transactions on Communications, E89-B(3), 1036–1039, March 2006.CrossRefGoogle Scholar
  24. 24.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chia-Hung Yeh
    • 1
    Email author
  • Ying H. Chen
    • 2
  • Ming-Chieh Chi
    • 1
  • Mei-Juan Chen
    • 3
  1. 1.National Sun Yat-Sen UniversityKaohsiungRepublic of China
  2. 2.National Health Research InstituteMiaoli CountyRepublic of China
  3. 3.National Dong-Hwa UniversityHualienRepublic of China

Personalised recommendations