Journal of Signal Processing Systems

, Volume 63, Issue 1, pp 117–127 | Cite as

Tracking Forecast Memories for Stochastic Decoding

  • Saeed Sharifi Tehrani
  • Ali Naderi
  • Guy-Armand Kamendje
  • Shie Mannor
  • Warren J. Gross


This paper proposes Tracking Forecast Memories (TFMs) as a novel method for implementing re-randomization and de-correlation of stochastic bit streams in stochastic channel decoders. We show that TFMs are able to achieve decoding performance similar to that of the previous re-randomization methods in the literature (i.e., edge memories), but they exhibit much lower hardware complexity. We then present circuit topologies for analog implementation of TFMs.


Iterative (channel) decoding Stochastic decoding Low-density parity-check codes ASIC 



We would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs (CRC), and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) for their financial support.


  1. 1.
    DVB (2003). The digital video broadcasting standard.
  2. 2.
    The IEEE 802.11n Working Group (2009). IEEE 802.11 wireless local area networks.
  3. 3.
    The IEEE 802.16 Working Group (2009). The IEEE 802.16 working Group on broadband wireless access standards.
  4. 4.
    The IEEE P802.3an 10GBASE-T Task Force (2006). The IEEE P802.3an 10GBASE-T Task Force homepage.
  5. 5.
    Amat, A., Benedetto, S., Montorsi, G., Vogrig, D., Neviani, A., & Gerosa, A. (2006). Design, simulation, and testing of a CMOS analog decoder for the block length-40 UMTS turbo code. IEEE Transactions on Communications, 54(11), 1973–1982. doi: 10.1109/TCOMM.2006.884836.CrossRefGoogle Scholar
  6. 6.
    Blanksby, A., & Howland, C. (2002). A 690-mw 1-Gb/s 1024-b rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-State Circuits, 37(3), 404–412.CrossRefGoogle Scholar
  7. 7.
    Brandon, T. L., Hang, R., Block, G., Gaudet, V., Cockburn, B. F., Howard, S. L., et al. (2008). A scalable LDPC decoder ASIC architecture with bit-serial message exchange. Integration, the VLSI Journal, 41(3), 385–398.CrossRefGoogle Scholar
  8. 8.
    Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2008). Block-interlaced LDPC decoders with reduced interconnect complexity. IEEE Transactions on Circuits and Systems-II: Express Briefs, 55(1), 74–78.CrossRefGoogle Scholar
  9. 9.
    Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2007). A 3.3-Gbps bit-serial block-interlaced min-sum LDPC decoder in 0.13-um CMOS. In Custom integrated circuits Conf. (pp. 459–462), U.S.A.Google Scholar
  10. 10.
    Gaudet, V., & Rapley, A. (2003). Iterative decoding using stochastic computation. Electronics Letters, 39(3), 299–301.CrossRefGoogle Scholar
  11. 11.
    Gross, W. J., Gaudet, V., & Milner, A. (2005). Stochastic implementation of LDPC decoders. In The 39th Asilomar conf. on signals, systems, and computers (pp. 713–717). Pacific Grove, CA.Google Scholar
  12. 12.
    Hemati, S., Banihashemi, A., & Plett, C. (2006). A 0.18μm analog min-sum iterative decoder for a (32,8) low-density parity-check (LDPC) code. IEEE Journal of Solid-State Circuits, 41(11), 2531–2540.CrossRefGoogle Scholar
  13. 13.
    Kschischang, F., Frey, B., & Loeliger, H. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    MacKay, D. J. C., & Neal, R. M. (1996). Near Shannon limit performance of low density parity check codes. Electronics Letters, 32(18), 1645–1646.CrossRefGoogle Scholar
  15. 15.
    Mannor, S., Shamma, J. S., & Arslan, G. (2007). Online calibrated forecasts: Memory efficiency versus universality for learning in games. Machine Learning, 67(1–2), 77–115. doi: 10.1007/s10994-006-0219-y.CrossRefGoogle Scholar
  16. 16.
    Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables. New York: Academic.zbMATHGoogle Scholar
  17. 17.
    Rapley, A., Winstead, C., Gaudet, V., & Schlegel, C. (2003). Stochastic iterative decoding on factor graphs. In Proc. of the 3rd int. symp. on turbo codes and related topics (pp. 507–510). Brest, France.Google Scholar
  18. 18.
    Sarkis, G., Mannor, S., & Gross, W. (2009). Stochastic decoding of LDPC codes over GF(q). In ICC 2009 symposium on selected areas in communications. Dresden, Germany.Google Scholar
  19. 19.
    Sharifi Tehrani, S., Gross, W. J., & Mannor, S. (2006). Stochastic decoding of LDPC codes. IEEE Communication Letters, 10(10), 716–718.CrossRefGoogle Scholar
  20. 20.
    Sharifi Tehrani, S., Jego, C., Zhu, B., & Gross, W. J. (2008) Stohastic decoding of linear block codes with high-densiy parity-check matrices. IEEE Transactions on Signal Processing, 56(11), 5733–5739.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sharifi Tehrani, S., Mannor, S., & Gross, W. J. (2008). Fully parallel stochastic LDPC decoders. IEEE Transactions on Signal Processing, 56(11), 5692–5703.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Sharifi Tehrani, S., Mannor, S., & Gross, W. J. (2007). An area-efficient FPGA-based architecture for fully-parallel stochastic LDPC decoding. In Proc. of the IEEE workshop on signal processing systems (SiPS) (pp. 255–260). Shanghai, ChinaCrossRefGoogle Scholar
  23. 23.
    Sharifi Tehrani, S., Naderi, A., Kamendje, G., Mannor, S., & Gross, W. J. (2009). Tracking forecast memories in stochastic decoders. In IEEE international conference on acoustics, speech and signal processing (pp. 561–564). Taipei, TaiwanCrossRefGoogle Scholar
  24. 24.
    Winstead, C. (2005). Error-control decoders and probabilistic computation. In Tohoku Univ. 3rd SOIM-COE conf. (pp. 349–352). Sendai, Japan.Google Scholar
  25. 25.
    Winstead, C., Gaudet, V., Rapley, A., & Schlegel, C. (2005). Stochastic iterative decoders. In IEEE ISIT (pp. 1116–1120).Google Scholar
  26. 26.
    Winstead, C., Nguyen, N., Gaudet, V., & Schlegel, C. (2006). Low-voltage CMOS circuits for analog iterative decoders. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(4), 829–841. doi: 10.1109/TCSI.2005.859773.CrossRefGoogle Scholar
  27. 27.
    Yang, S., Li, X., Wang, Y., & Qiu, Y. (2008). A two-level pipeline input interface circuit with probability splitting computation function used in analog decoder. In Proc. of the 9th international conference on solid-state and integrated-circuit technology (ICSICT) (pp. 1807–1810). doi: 10.1109/ICSICT.2008.4734907.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Saeed Sharifi Tehrani
    • 1
  • Ali Naderi
    • 1
  • Guy-Armand Kamendje
    • 1
  • Shie Mannor
    • 1
  • Warren J. Gross
    • 1
  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada

Personalised recommendations