Journal of Signal Processing Systems

, Volume 63, Issue 3, pp 265–275 | Cite as

DOA Estimation for Multiple Sparse Sources with Arbitrarily Arranged Multiple Sensors

  • Shoko ArakiEmail author
  • Hiroshi Sawada
  • Ryo Mukai
  • Shoji Makino


This paper proposes a method for estimating the direction of arrival (DOA) of multiple source signals for an underdetermined situation, where the number of sources N exceeds the number of sensors M (M < N). Some DOA estimation methods have already been proposed for underdetermined cases. However, since most of them restrict their microphone array arrangements, their DOA estimation ability is limited to a 2-dimensional plane. To deal with an underdetermined case where sources are distributed arbitrarily, we propose a method that can employ a 2- or 3-dimensional sensor array. Our new method employs the source sparseness assumption to handle an underdetermined case. Our formulation with the sensor coordinate vectors allows us to employ arbitrarily arranged sensors easily. We obtained promising experimental results for 2-dimensionally distributed sensors and sources 3×4, 3×5 (#sensors × #speech sources), and for 3-dimensional case with 4×5 in a room (reverberation time (RT) of 120 ms). We also investigate the DOA estimation performance under several reverberant conditions.


Direction of arrival (DOA) Sparseness Clustering Microphone array Anechoic model 


  1. 1.
    Pillai, S. U. (1989). Array signal processing. New York: Springer.Google Scholar
  2. 2.
    Brandstein, M., & Ward, D. (Eds.) (2001). Microphone arrays. New York: Springer.Google Scholar
  3. 3.
    Van Trees, H. L. (Ed.) (2002). Optimum array processing. New York: Wiley.Google Scholar
  4. 4.
    Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34, 276–280.CrossRefGoogle Scholar
  5. 5.
    Sawada, H., Mukai, R., Araki, S., & Makino, S. (2005). Frequency-domain blind source separation. In Benesty, J., Makino, S., Chen, J. (Eds.), Speech enhancement pp. 299–327. New York: Springer.CrossRefGoogle Scholar
  6. 6.
    Sawada, H., Mukai, R., Araki, S., & Makino, S. (2005). Multiple source localization using independent component analysis. In Proc. AP-S/URSI2005. Google Scholar
  7. 7.
    Lombard, A., Rosenkranz, T., Buchner, H., & Kellermann, W. (2008). Exploiting the self-steering capability of blind source separation to localize two or more sound sources in adverse environments. In Proc. ITG conference on speech communication. Google Scholar
  8. 8.
    Yılmaz, Ö., & Rickard, S. (2004). Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on SP 52(7), 1830–1847.CrossRefGoogle Scholar
  9. 9.
    Bofill, P., & Zibulevsky, M. (2000). Blind separation of more sources than mixtures using sparsity of their short-time Fourier transform. In Proc. ICA2000 (pp. 87–92).Google Scholar
  10. 10.
    Araki, S., Sawada, H., Mukai, R., & Makino, S. (2005). A novel blind source separation method with observation vector clustering. In Proc. 2005 international workshop on acoustic echo and noise control (IWAENC 2005) (pp. 117–120).Google Scholar
  11. 11.
    Araki, S., Sawada, H., Mukai, R., & Makino, S. (2007). Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Processing 87, 1833–1847.CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, Y., Mu, W., & Amin, M. G. (1999). Maximum-likelihood methods for array processing based on time-frequency distributions. In Proc. SPIE (Vol. 3807, 502–513).Google Scholar
  13. 13.
    Zhang, Y., Mu, W., & Amin, M. G. (2000). Time-frequency maximum likelihood methods for direction finding. Journal of the Franklin Institute 337(4), 483–497.CrossRefzbMATHGoogle Scholar
  14. 14.
    Burintramart, S., Sarkar, T. K., Zhang, Y., & Salazar-Palma, M. (2007). Nonconventional least squares optimization for DOA estimation. IEEE Transactions on Antennas and Propagation 55(3), 707–714.CrossRefGoogle Scholar
  15. 15.
    Rickard, S., & Dietrich, F (2000). DOA estimation of many W-disjoint orthogonal sources from two mixtures using DUET. In: Proc. SSAP2000 (pp. 311–314).Google Scholar
  16. 16.
    Shamsunder, S., & Giannakis, G. B. (1993). Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors. Signal Processing 30, 279–297.CrossRefzbMATHGoogle Scholar
  17. 17.
    Mitianoudis, N., & Stathaki, T. (2007). Batch and online underdetermined source separation using Laplacian mixture model. IEEE Transactions on Audio, Speech, and Language Processing 15(6), 1818–1832.CrossRefGoogle Scholar
  18. 18.
    Matsuo, M., Hioka, Y., & Hamada, N. (2005). Estimating DOA of multiple speech signals by improved histogram mapping method. In Proc. IWAENC2005 (pp. 129–132).Google Scholar
  19. 19.
    Karbasi, A., Sugiyama, A. (2006). DOA estimation method for an arbitrary triangular microphone arrangement. In Proc. EUSIPCO2006.Google Scholar
  20. 20.
    Araki, S., Sawada, H., Mukai, R., & Makino, S. (2006). DOA estimation for multiple sparse sources with normalized observation vector clustering. In Proc. ICASSP2006 (pp. 33–36).Google Scholar
  21. 21.
    Araki, S., Sawada, H., Mukai, R., & Makino, S. (2006). Performance evaluation of sparse source separation and DOA estimation with observation vector clustering in reverberant environments. In Proc. IWAENC2006.Google Scholar
  22. 22.
    Aoki, M., Okamoto, M., Aoki, S., Matsui, H., Sakurai, T., & Kaneda, Y. (2001). Sound source segregation based on estimating incident angle of each frequency component of input signals acquired by multiple microphones. Acoustical Science and Technology 22, 149–157.CrossRefGoogle Scholar
  23. 23.
    Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification, 2nd edn. New York: Wiley InterscienceGoogle Scholar
  24. 24.
    Mukai, R., Sawada, H., Araki, S., & Makino, S. (2004). Frequency domain blind source separation for many speech signals. In: Proc. ICA 2004. LNCS 3195 (pp. 461–469)Google Scholar
  25. 25.
    Rickard, S., & Yılmaz, Ö (2002). On the approximate W-disjoint orthogonality of speech. In Proc. ICASSP2002 (Vol. I, pp. 529–532)Google Scholar
  26. 26.
    ISO 3382 (1997). Acoustics—Measurement of the reverberation time of rooms with reference to other acoustical parameters.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shoko Araki
    • 1
    Email author
  • Hiroshi Sawada
    • 1
  • Ryo Mukai
    • 1
  • Shoji Makino
    • 2
  1. 1.NTT Communication Science LaboratoriesNTT CorporationKyotoJapan
  2. 2.University of TsukubaTsukubaJapan

Personalised recommendations