Journal of Signal Processing Systems

, Volume 60, Issue 1, pp 115–129 | Cite as

Detection of Structural Features in Biological Signals

  • Aleksandar Jovanović
  • Aleksandar Perović
  • Wlodzimierz Klonowski
  • Wlodzisław Duch
  • Zoran Đorđević
  • Slađana Spasić


In this article structures in biological signals are treated. The simpler—directly visible in the signals, which still demand serious methods and algorithms in the feature detection, similarity investigation and classification. The major actions in this domain are of geometric, thus simpler sort, though there are still hard problems related to simple situations. The other large class of less simple signals unsuitable for direct geometric or statistic approach, are signals with interesting frequency components and behavior, those suitable for spectroscopic analysis. Semantics of spectroscopy, spectroscopic structures and research demanded operations and transformations on spectra and time spectra are presented. The both classes of structures and related analysis methods and tools share a large common set of algorithms, all of which aiming to the full automatization. Some of the signal features present in the brain signal patterns are demonstrated, with the contexts relevant in BCI, brain computer interfaces. Mathematical representations, invariants and complete characterization of structures in broad variety of biological signals are in the central focus.


Structures in biological signals Spectrogram features WYSIWIG in geometric structures and spectroscopy Mathematical invariants and characterizations BCI—brain computer interface 



We are thankful to our support team leading Nenad Andonovski, Maja Jovanović, Group for Intelligent Systems, School of Mathematics, and Professor Nina Japundžić Zigon, from Institute for pharmacology and toxicology, School of Medicine, University of Belgrade, for the BP experimental recordings.

This work was partly supported by Serbian Ministry of Science and Technological Development (Projects No. 143021 and No.143027).


  1. 1.
    Blinowska, K. (2008). Methods for localization of time-frequency specific activity and estimation of information transfer in brain. International Journal of Bioelectromagnetism, 10(1), 2–16. Scholar
  2. 2.
    Jovanović, A. (1997). CD-ROM: CCD microscopy, image & signal processing. Belgrade: School of Mathematics, Un. of Belgrade.Google Scholar
  3. 3.
    Jovanović, A., Marić, M., Borovčanin, M., & Perović, A. (2004). Towards intelligent chromosome analysis. Proc. Conf. BIOINFORMATICS WORKSHOP, Soc. for Industrial and Applied Math, SIAM International Conference on Data Mining (SDM04), Orlando, Florida.Google Scholar
  4. 4.
    Malkov, S., Vujosevic, M., & Jovanovic, A. (1995). One Method for chromosome analysis and comparison. Proc. of the Conference “Mathematics and Others Sciences”, Crete, Greek Mathematical Society.Google Scholar
  5. 5.
    Novak, A., & Jovanovic, A. (1998). Image analysis of chromosomes subjected to HG banding and fluorescence in situ hybridization. Archive of oncology, 6(3), 103–104.Google Scholar
  6. 6.
    Haykin, S., & Widrow, B. (2003). Least-mean-square adaptive filters. Hoboken: Wiley. ISBN 0-471-21570-8.CrossRefGoogle Scholar
  7. 7.
    Culic, M., Saponjic, J., Jankovic, B., Kalauzi, A., & Jovanovic, A. (2001). Slow oscillation of Purkinje cell firing rate induced by locus coeruleus stimulation in rats. Neurophysiology, 33, 55–59.CrossRefGoogle Scholar
  8. 8.
    Japundžić Žigon, N. (2001). Effects of nonpeptide V1a and V2 antagonists on blood pressure fast oscillations in conscious rats. Clinical and Experimental Hypertension, 23(4), 277–292.CrossRefGoogle Scholar
  9. 9.
    Japundžić Žigon, N., Milutinović, S., & Jovanović, A. (2004). Effects of nonpeptide and selective V1 and V2 antagonists on blood pressure short-term variability in spontaneously hypertensive rats. Journal of Pharmacological Sciences, 95, 47–55.CrossRefGoogle Scholar
  10. 10.
    Babiloni, F., Cincotti, F., Marciani, M., Salinari, S., Astolfi, L., Tocci, A., et al. (2007). The estimation of cortical activity for brain-computer interface: applications in a domotic context. Computational Intelligence and Neuroscience, Article ID91651, 7 pages, doi: 10.1155/2007/91651.
  11. 11.
    Cincotti, F., Mattia, D., Babiloni, C., Carducci, F., Bianchi, L., Millan, J., et al. (2002). Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance-based classifiers. Method of Information in Medicine, 41(4), 337–341.Google Scholar
  12. 12.
    Jovanović, A. (1995). Inner music, conference report, mathematics and other sciences. Crete: Greek Mathematical Society.Google Scholar
  13. 13.
    Klonowski, W., Duch, W., Perovic, A., & Jovanovic, A. (2009). Some computational aspects of the brain computer interfaces based on inner music. Computational Intelligence and Neuroscience, Article ID 950403, 9 pages, doi: 10.1155/2009/950403.
  14. 14.
    Kroger, J. K., Elliott, L., Wong, T. N., Lakey, J., Dang, H., & George, J. (2006). Detecting mental commands in high-frequency EEG: Faster brain-machine interfaces. In Proceedings of the 2006 Biomedical Engineering Society Annual Meeting, Chicago.Google Scholar
  15. 15.
    Watkins, C., Kroger, J., Kwong, N., Elliott, L., & George, J. (2006). Exploring high-frequency EEG as a faster medium of brain-machine communication. In Proceedings Institute of Biological Engineering 2006 Annual Meeting, Tucson.Google Scholar
  16. 16.
    Jovanović, A. (1998). Brain signals in computer interface, (Russian: Kompjuterni interfeis s ispolzovaniem elektronnih signalov mozga). Intelektualnie Sistemi, 3(1–2), 109–117.Google Scholar
  17. 17.
    Jovanović, A. (2001). Research in the group for intelligent systems at Belgrade University, problems and results (Russian: Isledovania v oblasti intelektualnih system v Belgradskom Universitete, problemi i rezultati). Intelektualnie Sistemi, 6(1–4), 163–182.Google Scholar
  18. 18.
    Jovanović, A., Jovanović, M., Perović, A., & Marić, M. (2006). A system for neural acoustics analysis. In Proceedings of the 4th Annual Serbian—Hungarian joint symposium on Intelligent Systems, SISY 2006, pp. 275–283.Google Scholar
  19. 19.
    Jovanović, A., & Perović, A. (2007). Brain computer interfaces—some technical remarks. International Journal of Bioelectromagnetism, 9(3), 91–102. Scholar
  20. 20.
    Grierson, M. (2008). Composing with brainwaves: Minimal trial P300b recognition as an indication of subjective preference for the control of a musical instrument. Proceedings of the ICMC, Belfast 2008.Google Scholar
  21. 21.
    Perović, A., Stefanović, N., & Jovanović, A. (2005). Syntax Zooming. Proc. of 3rd Serbian—Hungarian Joint Symposium On Intelligent Systems, Subotica (SISY 2005).Google Scholar
  22. 22.
    Ćulić, M., Martać-Blanuša, L., Grbić, G., Spasić, S., Janković, B., & Kalauzi, A. (2005). Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats. Acta Neurobiologiae Experimentalis, 65, 11–17.Google Scholar
  23. 23.
    Grbić, G., Ćulic, M., Martać, L., Soković, M., Spasić, S., & Đoković, D. (2008). Effect of camphor essential oil on rat cerebral cortical activity described by changes of fractal dimension. Archives of Biological Sciences, 60(4), 547–553.CrossRefGoogle Scholar
  24. 24.
    Spasić, S., Kalauzi, A., Ćulić, M., Grbić, G., & Martać, L. (2005). Fractal analysis of rat brain activity after injury. Medical & Biological Engineering &Computing, 43, 345–348.CrossRefGoogle Scholar
  25. 25.
    Spasić, S., Ćulić, M., Grbić, G., Lj, M., Sekulić, S., & Mutavdžić, D. (2008). Spectral and fractal analysis of cerebellar activity after single and repeated brain injury. Bulletin of Mathematical Biology, 70(4), 1235–1249.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Klonowski, W., Olejaczyk, E., Stepien, R., Jalowiecki, P., & Rudner, R. (2006). Monitoring the depth of anaesthesia using fractal complexity method. In M. M. Novak (Ed.), Complexus mundi, emergent patterns in nature (pp. 333–342). Singapur: World Scientific.CrossRefGoogle Scholar
  27. 27.
    Klonowski, W. (2007). From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine. London: Nonlinear Biomedical Physics, BioMed Central.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aleksandar Jovanović
    • 1
  • Aleksandar Perović
    • 1
  • Wlodzimierz Klonowski
    • 2
  • Wlodzisław Duch
    • 3
  • Zoran Đorđević
    • 1
  • Slađana Spasić
    • 4
  1. 1.Group for Intelligent Systems, School of MathematicsUniversity of BelgradeBelgradeSerbia
  2. 2.Lab. Biosignal Analysis Fundamentals, Institute of Biocybernetics & Biomedical EngineeringPolish Academy of SciencesWarsawPoland
  3. 3.Department of InformaticsNicolaus Copernicus UniversityTorunPoland
  4. 4.Department of Life SciencesInstitute for Multidisciplinary ResearchBelgradeSerbia

Personalised recommendations