Advertisement

Journal of Signal Processing Systems

, Volume 59, Issue 3, pp 297–307 | Cite as

A Novel Redundant Binary Number to Natural Binary Number Converter

  • S. K. Sahoo
  • Anu Gupta
  • Abhijit R. Asati
  • Chandra Shekhar
Article

Abstract

Redundant binary number appears to be appropriate for high-speed arithmetic operation, but the delay and hardware cost associated with the conversion from redundant binary (RB) to natural binary (NB) number is still a challenging task. In the present investigation a simple approach has been adopted to achieve high speed with lesser hardware and power saving. A circuit level approach has been adopted to implement the equivalent bit conversion algorithm (EBCA) (Kim et al. IEEE Journal of Solid State Circuits 36:1538-1544, 2001, 38:159-160, 2003) for RB to NB conversion. The circuit is designed based on exploration of predictable carry out feature of EBCA algorithm. This implementation concludes a significant delay power product and component complexity advantage for a 64-bit RB to NB conversion using novel carry-look-ahead equivalent bit converter.

Keywords

Redundant binary number Equivalent bit conversion algorithm Redundant binary to natural binary converter Carry-look-ahead adder 

References

  1. 1.
    Takagi, N., Yasuura, H., & Yajima, S. (1984). A VLSI-Oriented High-Speed Multiplier Using Redundant Binary Adder Tree. IECE Japan, J66.d, 683–690.Google Scholar
  2. 2.
    Takagi, N., Yasura, H., & Yajima, S. (1985). High-speed VLSI multiplication algorithm with a redundant binary addition tree. IEEE Transactions on Computers, C-34(9), 217–220.CrossRefGoogle Scholar
  3. 3.
    Ercegovac, M. D., & Lang, T. (1987). On-the-fly conversion of redundant into conventional representations. IEEE Transactions on Computers, C-36(7), 895–897.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rajashekhara, T. N., & Nale, A. S. (1990). Conversion from signed-digit to radix complement representation. International Journal of Electronics, 69(6), 717–721.CrossRefGoogle Scholar
  5. 5.
    Yen, S., Laih, C., Chcn, C., & Lee, J. (1992). An efficient redundant-binary number to binary number converter. IEEE Journal of Solid-state Circuits, 27(1), 109–112.CrossRefGoogle Scholar
  6. 6.
    Bewick, G. (1994). “Fast multiplication: algorithms and implementations,” Technical report CSL-TR-94-617, Stanford Univ., Apr.Google Scholar
  7. 7.
    Choo, I., & Deshmukh, R. G. (2001). “A novel conversion scheme from a redundant binary to two’s complement binary number for parallel architectures,” in Southeastcon 2001 Proceedings of IEEE, 2001, Clemson, pp. 196–201, March 30–April 1.Google Scholar
  8. 8.
    Blair, G. M. (1998). The Equivalence of two’s-complement addition and the conversion of redundant binary of twos-complement numbers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(6), 669–671.CrossRefGoogle Scholar
  9. 9.
    Ruiz, G. A. (1999). 4bit CLA-based conversion from redundant to binary representation for CMOS simple and multi-output implementations. Electronics Letters, 35(4), 281–283.CrossRefGoogle Scholar
  10. 10.
    Lee, S.-H., Bae, S.-J., & Park, H.-J. (2002). A compact radix-64 54x54 CMOS redundant binary parallel multiplier. IEICE Transactions on Electronics, E85-C(6), 1342–1350.Google Scholar
  11. 11.
    Kim, Y., Song, B.-S., Grosspietsch, J., & Gilling, S. F. (2001). A carry-free 54b x 54b multiplier using equivalent bit conversion algorithm. IEEE Journal of Solid State Circuits, 36(10), 1538–1544.CrossRefGoogle Scholar
  12. 12.
    Kim, Y., Song, B.-S., Grosspietsch, J., & Gilling, S. F. (2003). Correction to a carry-free 54 b X 54 b multiplier using equivalent bit conversion algorithm. IEEE Journal of Solid-State Circuits, 38(1), 159–160.CrossRefGoogle Scholar
  13. 13.
    Avizienis, A. (1961). IRE Transactions on Electronics Computers, EC-10, 389–400.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Makino, H., Nakase, Y., Suzuki, H., Morinaka, H., Shinohara, H., & Mashiko, K. (1996). An 8.8-ns 54 x 54-Bit multiplier with high speed redundant binary architecture. IEEE Journal of Solid State Circuits, 31(6), 773–783.CrossRefGoogle Scholar
  15. 15.
    Booth, A. D. (1951). A signed binary multiplication technique. Quarterly Journal of Mechanics and Applied Mathematics, 4(2), 236–240.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goto, G., Inoue, A., Ohe, R., Kashiwakura, S., Mitarai, S., Tsuru, T., et al. (1997). A 4.1 ns compact 54X54 -bit multiplier utilizing sign-select Booth encoders. IEEE Journal of Solid-State Circuits, 32(11), 1676–1682.CrossRefGoogle Scholar
  17. 17.
    Hennesy, J. L., & Patterson, D. A. (2000). Computer architecture a quantitative approach. Morgan Kaufmann Publication. San Francisco, Inc.Google Scholar
  18. 18.
    Zirnmermann, R., & Fichtne, W. (1997). Low-Power Logic Styles: CMOS Versus Pass-Transistor Logic. IEEE Journal of Solid State Circuits, 32(7), 1079–1090.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. K. Sahoo
    • 1
  • Anu Gupta
    • 1
  • Abhijit R. Asati
    • 1
  • Chandra Shekhar
    • 2
  1. 1.Department of Electrical and Electronics EngineeringBirla Institute Of Technology And SciencePilaniIndia
  2. 2.Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations