Advertisement

Journal of Signal Processing Systems

, Volume 63, Issue 2, pp 191–202 | Cite as

Quasi-Static Scheduling of CAL Actor Networks for Reconfigurable Video Coding

  • Jani Boutellier
  • Christophe Lucarz
  • Sébastien Lafond
  • Victor Martin Gomez
  • Marco Mattavelli
Article

Abstract

The upcoming Reconfigurable Video Coding (RVC) standard from MPEG (ISO / IEC SC29WG11) defines a library of coding tools to specify existing or new compressed video formats and decoders. The coding tool library has been written in a dataflow/actor-oriented language named CAL. Each coding tool (actor) can be represented with an extended finite state machine and the data communication between the tools are described as dataflow graphs. This paper proposes an approach to model the CAL actor network with Parameterized Synchronous Data Flow and to derive a quasi-static multiprocessor execution schedule for the system. In addition to proposing a scheduling approach for RVC, an extension to the well-known permutation flow shop scheduling problem that enables rapid run-time scheduling of RVC tasks, is introduced.

Keywords

Scheduling Parallel processing Digital signal processors Modeling 

Notes

Acknowledgements

This research has been partially funded by the Nokia Foundation, Finnish Graduate School for Electronics, Telecommunication and Automation, and the Tekes project ECUUS. The authors would like to thank the reviewers for comments that helped improving this article.

References

  1. 1.
    Lucarz, C., Mattavelli, M., Thomas-Kerr, J., & Janneck, J. W. (2007). Reconfigurable media coding: A new specification model for multimedia coders. In IEEE workshop on signal processing systems (pp. 481–486). Shanghai, China.Google Scholar
  2. 2.
    Eker, J., & Janneck, J. W. (2003). CAL language report. UC Berkeley, Tech. Rep. UCB/ERL M03/48.Google Scholar
  3. 3.
    Lee, E., & Sangiovanni-Vincentelli, A. (1998). A framework for comparing models of computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(12), 1217–1229.CrossRefGoogle Scholar
  4. 4.
    Lucarz, C., Mattavelli, M., Wipliez, M., Roquier, G., Raulet, M., Janneck, J. W., et al. (2008). Dataflow/actor-oriented language for the design of complex signal processing systems. In Conference on design and architectures for signal and image processing (pp. 168–175). Bruxelles, Belgium.Google Scholar
  5. 5.
    Girault, A., Lee, B., & Lee, E. A. (1999). Hierarchical finite state machines with multiple concurrency models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18, 742–760.CrossRefGoogle Scholar
  6. 6.
    Thiele, L., Strehl, K., Ziegenbein, D., Ernst, R., & Teich, J. (1999). Funstate—an internal design representation for codesign. In IEEE/ACM international conference on Computer-aided design (pp. 558–565). San Jose, California, USA.Google Scholar
  7. 7.
    Buck, J., & Vaidyanathan, R. (2000). Heterogeneous modeling and simulation of embedded systems in El Greco. In Eighth international workshop on hardware/software codesign (pp. 142–146). San Diego, California, USA.Google Scholar
  8. 8.
    Bhattacharya, B., & Bhattacharyya, S. S. (2001). Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10), 2408–2421.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Henniger, O., & Neumann, P. (1995). Test case generation based on formal specifications in Estelle. In IEEE international workshop on factory communication systems (pp.135–141). Leysin, Switzerland.Google Scholar
  10. 10.
    Lee, E., & Messerschmitt, D. (1987). Synchronous data flow. Proceedings of the IEEE, 75(9), 1235–1245.CrossRefGoogle Scholar
  11. 11.
    Boutellier, J., Sadhanala, V., Lucarz, C., Brisk, P., & Mattavelli, M. (2008). Scheduling of dataflow models within the reconfigurable video coding framework. In IEEE workshop on signal processing systems (pp. 182–187). Washington D.C., USA.Google Scholar
  12. 12.
    von Platen, C., & Eker, J. (2008). Efficient realization of a CAL video decoder on a mobile terminal. In IEEE workshop on signal processing systems (pp. 176–181). Washington D.C., USA.Google Scholar
  13. 13.
    Gu, R., Janneck, J. W., Raulet, M., & Bhattacharyya, S. S. (2009). Exploiting statically schedulable regions in dataflow programs. In IEEE international conference on acoustics, speech and signal processing. Taipei, Taiwan.Google Scholar
  14. 14.
    sourceforge.net (2009). Open Dataflow Sourceforge project. http://opendf.sourceforge.net/.
  15. 15.
    Janneck, J., Miller, I., Parlour, D., Roquier, G., Wipliez, M., & Raulet, M. (2008). Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study. In IEEE workshop on signal processing systems (pp. 287–292).Google Scholar
  16. 16.
    Wipliez, M., Roquier, G., Raulet, M., Nezan, J.-F., & Deforges, O. (2008). Code generation for the MPEG reconfigurable video coding framework: From CAL actions to C functions. In IEEE international conference on multimedia and expo (pp. 1049–1052). Hannover, Germany.Google Scholar
  17. 17.
    Bhattacharya, B., & Bhattacharyya, S. S. (1999). Parameterized modeling and scheduling of dataflow graphs. Institute for advanced computer studies, University of Maryland at College Park, Tech. Rep. UMIACS-TR-99-73, December 1999, also Computer Science Technical Report CS-TR-4083.Google Scholar
  18. 18.
    Ko, D.-I., & Bhattacharyya, S. S. (2005). Dynamic configuration of dataflow graph topology for DSP system design. In IEEE international conference on acoustics, speech, and signal processing (Vol. 5, pp. 69–72).Google Scholar
  19. 19.
    Sriram, S., & Bhattacharyya, S. S. (2000). Embedded multiprocessors: Scheduling and synchronization. New York: Marcel Dekker.Google Scholar
  20. 20.
    French, S. (1982). Sequencing and scheduling: An introduction to the mathematics of the job-shop. Chichester: Ellis Horwood.zbMATHGoogle Scholar
  21. 21.
    Boutellier, J., Bhattacharyya, S. S., & Silvén, O. (2009). A low-overhead scheduling methodology for fine-grained acceleration of signal processing systems. Journal of Signal Processing Systems. doi: 10.1007/s11265-009-0366-z.Google Scholar
  22. 22.
    sourceforge.net (2009). JGraph Sourceforge project. http://sourceforge.net/projects/jgraph.
  23. 23.
    sourceforge.net (2009). SDF4J Sourceforge project. http://sourceforge.net/projects/sdf4j.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jani Boutellier
    • 1
  • Christophe Lucarz
    • 2
  • Sébastien Lafond
    • 3
  • Victor Martin Gomez
    • 1
  • Marco Mattavelli
    • 2
  1. 1.Machine Vision GroupUniversity of OuluOuluFinland
  2. 2.Microelectronic Systems LaboratoryÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Embedded Systems LaboratoryÅbo Akademi UniversityTurkuFinland

Personalised recommendations