Journal of Signal Processing Systems

, Volume 63, Issue 1, pp 27–37 | Cite as

Implementation of a High-Speed MIMO Soft-Output Symbol Detector for Software Defined Radio



This paper presents a programmable MMSE soft-output MIMO symbol detector that supports 600 Mbps data rate defined in 802.11n. The detector is implemented using a multi-core floating-point processor and configurable soft-bit demapper. Owing to the dynamic range supplied by the floating-point SIMD datapath, special algorithms can be adopted to reduce the computational latency of channel processing with sufficient numerical stability for large channel matrices. When compared to several existing fixed-functional solutions, the detector proposed in this paper is smaller and faster. More important, it is programmable and configurable so that it can support various MIMO transmission schemes defined by different standards.


SDR MIMO OFDM MMSE Soft-output Detection VLSI 



The work of D. Wu, J. Eilert and D. Liu are supported partly by the Multi-base Project from EU-7FP. The authors would like to thank ST Microelectronics for supplying 65nm process and Prof. Erik G. Larsson for discussion on MIMO detection.


  1. 1.
    IEEE (2007). IEEE WLAN 802.11n Draft Standard. Draft Std P802.11n/D2.00.Google Scholar
  2. 2.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  3. 3.
    Raffaele, R. (2006). LDPC codes for W-LAN IEEE 802.11n: An overview. Pisa: LDPC@work.Google Scholar
  4. 4.
    Larsson, E. G., & Jalden, J. (2008). Soft MIMO detection at fixed complexity via partial marginalization. IEEE Transactions on Signal Processing, 56, 3397–3407.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Eilert, J., Wu, D., & Liu, D. (2008). Implementation of a programmable linear MMSE detector for MIMO-OFDM. In Proc. IEEE ICASSP.Google Scholar
  6. 6.
    Golub, G. H., & Van Loan, C. F. (1996). Matrix computations, 3rd edn. Baltimore: The Johns Hopkins University Press.MATHGoogle Scholar
  7. 7.
    Eilert, J., Wu, D., & Liu, D. (2007). Efficient complex matrix inversion for MIMO software defined radio. In Proc. IEEE ISCAS.Google Scholar
  8. 8.
    Wu, D., Eilert, J., Liu, D., Wang, D., Al-Dhahir, N., & Minn, H. (2007). Fast complex valued matrix inversion for multi-user stbc-mimo decoding. In Proc. IEEE ISVLSI.Google Scholar
  9. 9.
    Sayed, A. H., Younis, W. M., & Tarighat, A. (2005). An invariant matrix structure in multi-antenna communications. IEEE Signal Processing Letters, 12, 749–752.CrossRefGoogle Scholar
  10. 10.
    Eilert, J., Wu, D., & Liu, D. (2008). Real-time Alamouti STBC decoding on a programmable baseband processor. In Proc. IEEE ICCSC.Google Scholar
  11. 11.
    Edman, F., & Öwall, V. (2005). A scalable pipelined complex valued matrix inversion architecture. In Proc. IEEE ISCAS.Google Scholar
  12. 12.
    Myllylä, M., Hintikka, J., Cavallaro, J. R., Juntti, M., Limingoja, M., & Byman, A. (2005). Complexity analysis of MMSE detector architectures for MIMO OFDM systems. In Proc. 39th Asilomar conference on signals, systems and computers.Google Scholar
  13. 13.
    Hochwald, B. H., & ten Brink, S. (2003). Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications, 51(3), 389–399.CrossRefGoogle Scholar
  14. 14.
    Collings, I. B., Butler, M. R. G., & McKay, M. (2004). Low complexity receiver design for MIMO bit-interleaved coded modulation. In Proc. IEEE ISSSTA.Google Scholar
  15. 15.
    Strassen, V. (1969). Gaussian elimination is not optimal. Numerical Mathematics, 13, 354–356.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kim, H. S., Zhu, W., Bhatia, J., Mohammed, K., Shah, A., & Daneshrad, B. (2008). A practical, hardware friendly MMSE detector for MIMO-OFDM-based system. EURASIP Journal on Advanced in Signal Processing, 2008.Google Scholar
  17. 17.
    Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., & Bölcskei, H. (2005). VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE Journal of Solid State Circuits, 40(7).Google Scholar
  18. 18.
    Li, M., Bougard, B., Xu, W., Novo, D., Perre, L. V. D., & Catthoor, F. (2008). Optimizing near-ML MIMO detector for SDR baseband on parallel programmable architectures. In Proc. IEEE DATE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations