Journal of Signal Processing Systems

, Volume 60, Issue 3, pp 291–303 | Cite as

Adaptive Pixel Interpolation for Spatial Error Concealment

  • Li SongEmail author
  • Xin Ma


Error concealment techniques are widely used as efficient ways to recover the lost information at the decoder. This paper proposes an adaptive pixel interpolation technique for spatial error concealment in the block based coding system. For a missing pixel in a corrupted block, its value is derived from four neighborhoods of the block through interpolation using multiple prediction strategy. The weighting rules of these four neighborhood blocks are carefully designed with regard to three factors, the distance to the missing pixels within the given corrupted block, the percentage of uncorrupted pixels, and the similarity to the given corrupted block. The proposed method works effectively in consecutive block loss situation, which is common in real applications of video transmission. Experimental results show the proposed technique gains more accurate recovery of the missing pixels than the existing schemes.


Error concealment Block based coding Pixel interpolation 



This work was supported in part by National Natural Science Foundation of China (60702044,60625103, 60632040) , and Research Fund for the Doctoral Program of Higher Education of China (200802481006).


  1. 1.
    Wang, Y., & Zhu, Q. (1998). Error control and concealment for video communication: a review. Proc IEEE, 86(5), 974–996. doi: 10.1109/5.664283.CrossRefGoogle Scholar
  2. 2.
    Aign, S., & Fazel, K. (1995). Temporal and spatial error concealment techniques for hierarchical mpeg-2 video codec. In Proc. IEEE int. conf. communication, ICC, June 3, 1778–1783.Google Scholar
  3. 3.
    Kwok, W., & Sun, H. (1993). Multi-directional interpolation for spatial error concealment. IEEE Transactions on Consumer Electronics, 39(3), 455–460. doi: 10.1109/30.234620.CrossRefGoogle Scholar
  4. 4.
    Salama, P., Shroff, N. B., Coyle, E. J., & Delp, E. J. (1995). Error concealment techniques for encoded video streams. In Proc. Int. Conf. Image Processing, Oct. 1, 9–12.Google Scholar
  5. 5.
    Suh, J. W., & Ho, Y. S. (1997). Error concealment based on directional interpolation. IEEE Transactions on Consumer Electronics, 43(3), 295–302. doi: 10.1109/30.628616.CrossRefGoogle Scholar
  6. 6.
    Wang, Y., & Zhu, Q. (1991). Signal loss recovery in DCT-based image and video codecs, In Proc. SPIE Conf. Visual Communication and Image Processing, Nov 1605, 667–678.Google Scholar
  7. 7.
    Park, J. W., Kim, J. W., & Lee, S. U. (1997). DCT coefficients recovery-based error concealment technique and its application to the MPEG-2 bit stream error. IEEE Transactions on Circuits and Systems for Video Technology, 7(10), 845–854. doi: 10.1109/76.644064.CrossRefGoogle Scholar
  8. 8.
    Criminisi, A., Perez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212. doi: 10.1109/TIP.2004.833105.CrossRefGoogle Scholar
  9. 9.
    Gao, Y., Wang, J., Liu, Y. Q., Yang, X. K., & Wang, J. (2007). Spatial error concealment technique using verge points, In Proc. IEEE int. conf. Acoustics, Speech and Signal Processing, ICASSP, April. 1, 725–728.Google Scholar
  10. 10.
    Sirikam, A., & Kumwilaikak, W. (2007). New spatial error concealment using dynamic texture estimation and geometric interpolation, In Proc. IEEE int. conf. Multimedia and Expo, ICME, July. (pp. 120–123).Google Scholar
  11. 11.
    Gharavi, H., & Gao, S. (2008). Spatial interpolation algorithm for error concealment, In Proc. IEEE int. conf. Acoustics, Speech and Signal Processing, ICASSP, March–April. 1153–1156.Google Scholar
  12. 12.
    Wang, Z., Yu, Y., & Zhang, D. (1998). Best neighborhood matching: An information loss restoration technique for block-based image coding systems. IEEE Transactions on Image Processing, 7(6), 1056–1061. doi: 10.1109/83.701166.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, X., & Orchard, M. (2002). Novel sequential error-concealment techniques using orientation adaptive interpolation. IEEE Transactions on Circuits and Systems for Video Technology, 12(10), 857–864. doi: 10.1109/TCSVT.2002.804882.CrossRefGoogle Scholar
  14. 14.
    Park, J. W., & Lee, S. U. (1999). Recovery of corrupted image data based on the NURBS interpolation. IEEE Transactions on Circuits and Systems for Video Technology, 9(10), 1003–1008. doi: 10.1109/76.795052.CrossRefGoogle Scholar
  15. 15.
    Hsia, S. C. (2004). An edge-oriented spatial interpolation for consecutive block error concealment. IEEE Signal Processing Letters, 11(6), 577–580. doi: 10.1109/LSP.2004.827916.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, R. F., Zhou, Y. H., & Huang, X. D. (2004). Content-adaptive spatial error concealment for video communication. IEEE Transactions on Consumer Electronics, 50(1), 335–341. doi: 10.1109/TCE.2004.1277882.CrossRefGoogle Scholar
  17. 17.
    Agrafiotis, D., Bull, D., & Canagarajah, C. N. (2006). Enhanced error concealment with mode selection. IEEE Transactions on Circuits and Systems for Video Technology, 16(8), 960–973. doi: 10.1109/TCSVT.2006.879988.CrossRefGoogle Scholar
  18. 18.
    Sun, H., & Kwok, W. (1995). Concealment of damaged block transform coded images using projection onto convex set. IEEE Transactions on Image Process., 4(4), 470–477. doi: 10.1109/83.370675.CrossRefGoogle Scholar
  19. 19.
    Kumwilaisak, W., & Hartung, F. (2004). An intraframe error concealment: nonlinear pattern alignment and directional interpolation, In Proc. IEEE int. conf. Image Processing, ICIP, Oct. 2, 825–828.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Image Communication and Information Processing, Shang Key Laboratory of Digital Media Processing and TransmissionUniversity of Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations